K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

Ta có:

(x-3)^2>=0

(y-1)^2>=0 mà: 3(x-3)^2+2(y-1)^2=0

nên:(x-3)^2=0 và: (y-1)^2=0

=>x=3 và: y=1

Vậy.......

16 tháng 11 2017

8908,7890,7890

9 tháng 3 2020

Hình như chưa có y,z...

9 tháng 3 2020
  1. Do (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)

       2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}

       3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x- 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) < 0 nên phair cos thừa  số be hơn 0.

=> 0 < x2 < 11

Từ 3 điều trên ==> x2 = 9 => x = 3

10 tháng 8 2017

123456789?

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

23 tháng 2 2015

c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1

TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1 

23 tháng 2 2015

a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0 

3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7

3 tháng 5 2020

Shbh=a x h= 48 x (48 x \(\frac{1}{3}\) ) =768 (cm2 )

3 tháng 5 2020

1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)

Vì \(\left(3x-5\right)^{2010}\ge0\forall x\)\(\left(y-1\right)^{2012}\ge0\forall y\)\(\left(x-z\right)^{2014}\ge0\forall x,z\)

\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)

Vậy \(x=z=\frac{5}{3}\)và \(y=1\)