Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này mình nhằm. thay vì bằng 1 nó bằng 11/13 nha. giúp mình với cảm ơn nhiều
áp dụng bdt amgm ta có \(xyz\le\left(\frac{x+y+z}{3}\right)^3=\frac{1}{3^3}=\frac{1}{27}\)
\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\le\left(\frac{x+y+y+z+x+z}{3}\right)^3=\left(\frac{2\left(x+y+z\right)}{3}\right)^3=\frac{8}{27}\)
\(\Rightarrow xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)\le\frac{1}{27}.\frac{8}{27}=\left(\frac{2}{9}\right)^3\)
dau = xay ra khi x=y=z=1/3
ta có \(x^4+y^4\ge2x^2y^2\) \(y^4+z^4\ge2y^2z^2\) \(z^4+x^4\ge2x^2z^2\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\)\(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
mat khac \(\left(a^2+b^2+c^2\right)\ge\frac{\left(a+b+c\right)^2}{3}\) (tu cm)
\(\Rightarrow x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
min =1/3 \(\) dau = xay ra khi \(x=y=z=\frac{+-\sqrt{3}}{3}\)
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)