Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy /x+19/5/>=0
/y+18/19/>=0
/x-2004/>=0
Mà /x+19/5/+/y+18/19/+/z-2004/=0
=> x+19/5=0=>x=-19/5
y+18/19=0=>y=-18/19
z-2004=0=>z=2004
Câu còn lại tương tự nha bạn
Tích mik nha
b, \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
vì \(\left|x+\frac{3}{4}\right|\ge0\forall x;\left|y-\frac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall z\)
Dâu ''='' xảy ra <=> x = -3/4 ; y = 1/5 ; \(-\frac{3}{4}+\frac{1}{5}+z=0\Leftrightarrow z=\frac{11}{20}\)
Vì x-y-z = 0 => x = z + y ; y = x - z ; -z = y - x
Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z+y}{z}\)
\(=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
1)
a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).
=> \(\frac{x}{7}=\frac{y}{13}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;39\right).\)
c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)
=> \(\frac{x}{9}=\frac{y}{10}\) và \(y-x=120.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1080;1200\right).\)
d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)
Mình chỉ làm 3 câu thôi nhé, dài quá bạn.
Chúc bạn học tốt!
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
a) Vì : \(\left|x+\frac{19}{5}\right|\ge0\forall x\in R\)
\(\left|y+\frac{1890}{1975}\right|\ge0\forall y\in R\)
\(\left|z-2004\right|\ge0\forall z\in R\)
\(\Rightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\in R\)
Dấu''='' xảy ra khi và chỉ khi \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-1890}{1975}\\z=2004\end{cases}}\)
b,\(\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\le0\)
Ta có:\(\left|x+\frac{9}{2}\right|\ge0\forall x\)
\( \left|y+\frac{4}{3}\right|\ge0\forall y\)
\(\left|z+\frac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\ge0\forall x,y,z\)
Mà \(\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\le0\)
\(\Rightarrow\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{9}{2}\right|=0\\\left|y+\frac{4}{3}\right|=0\\\left|z+\frac{7}{2}\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+\frac{9}{2}=0\\y+\frac{4}{3}=0\\z+\frac{7}{2}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{9}{2}\\y=-\frac{4}{3}\\z=-\frac{7}{2}\end{cases}}}\)