\(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\)thuộc Q​ và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

\(\frac{x-y\sqrt{2017}}{y-z\sqrt{2017}}\)
đề thế này còn tạm chấp nhận :v

8 tháng 7 2017

Từ \(x+y+z=2017\Rightarrow\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=\frac{x+y}{xy}+\frac{x+y}{z+''x+y+z''}=0\Rightarrow''x+y''''\frac{1}{xy}+\frac{1}{xz+yz+z^2}=0\)

\(\Rightarrow\frac{''x+y''''y+z''''z+x''}{xyz''x+y+z''}=0\Rightarrow''x+y''''y+z''''z+x''=0\) Do x,y,z khác 0

Mà \(x+y+z=2017\)

\(\Rightarrow x+y=0\Rightarrow x=2017\)

hoặc \(y+z=0\Rightarrow x=2017\)

hoặc \(x+z=0\Rightarrow x=2017\)

29 tháng 9 2017

Ta có :   \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)

    \(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)

        nhân theo vế của ( 1 ) ; ( 2 ) , ta có :

     \(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)

    \(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)

  rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :

     \(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)

     \(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)

     \(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\) 

       \(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

  A = 2017 

 ( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :)   )

29 tháng 9 2017

2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)

\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)

\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)

Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)

\(\Leftrightarrow x=2015;y=2016;z=2017\)

4 tháng 7 2017

a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0

=>x=y=z thay vào pt 2 ta dc x=y=z=3

c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0

Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)

=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...

d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)

\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)

 <=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)

<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)

=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x

b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y

5 tháng 9 2017

Bài 1 bạn nhân \(\left(b-\sqrt{b^2+2017}\right)\)sau đó nó tạo thành hăng đẳng thức,sau đó tiếp tục nhân liên hợp,là ra a=-b

\(\Rightarrow a+b=0\)

6 tháng 9 2017

1/ Ta có:

\(\hept{\begin{cases}\left(a+\sqrt{a^2+2017}\right)\left(\sqrt{a^2+2017}-a\right)\left(b+\sqrt{b^2+2017}\right)=2017\left(\sqrt{a^2+2017}-a\right)\\\left(a+\sqrt{a^2+2017}\right)\left(\sqrt{b^2+2017}-b\right)\left(b+\sqrt{b^2+2017}\right)=2017\left(\sqrt{b^2+2017}-b\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2017\left(b+\sqrt{b^2+2017}\right)=2017\left(\sqrt{a^2+2017}-a\right)\\2017\left(a+\sqrt{a^2+2017}\right)=2017\left(\sqrt{b^2+2017}-b\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b+\sqrt{b^2+2017}=\sqrt{a^2+2017}-a\left(1\right)\\a+\sqrt{a^2+2017}=\sqrt{b^2+2017}-b\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế ta được

\(a+b=0\)

7 tháng 10 2018

Bạn gõ thừa số "1" thì phải ?

Đặt \(\frac{x+\sqrt{2017}y}{y+\sqrt{2017}z}=m\) (với \(m\in Q\)

\(\Rightarrow x+\sqrt{2017}y=my+mz\sqrt{2017}\)\(\Leftrightarrow\left(x-my\right)-\sqrt{2017}\left(y-mz\right)=0\)(*)

+) Nếu \(y-mz\ne0\) thì: \(\sqrt{2017}=\frac{-\left(x-my\right)}{y-mz}\) (1)

Ta có: \(x;y;z\in N;m\in Q\Rightarrow\frac{-\left(x-my\right)}{y-mz}\in Q\)             (2)

\(\sqrt{2017}\in I\) (Do 2017 không phải số chính phương)           (3)

Từ (1); (2) và (3) => Mâu thuẫn => \(y-mz\ne0\)(loại)

+) Nếu \(y-mz=0\) thì: Từ (*) =>   \(\hept{\begin{cases}x-my=0\\y-mz=0\end{cases}\Rightarrow}\hept{\begin{cases}x=my\\y=mz\end{cases}}\Rightarrow\hept{\begin{cases}m=\frac{x}{y}=\frac{y}{z}\\x=m^2z\\y=mz\end{cases}}\Rightarrow\hept{\begin{cases}y^2=xz\\x=m^2z\\y=mz\end{cases}}\)

Đặt \(x^2+y^2+z^2=p\) (p nguyên tố) \(\Rightarrow\left(x+z\right)^2-2xz+y^2=p\)

\(\Rightarrow\left(x+z\right)^2-y^2=p\)(Do y2 = xz) \(\Leftrightarrow\left(x+z-y\right)\left(x+y+z\right)=p\)

Ta thấy x;y;z thuộc N* => \(x+z-y\le x+y+z\)

Nên \(\hept{\begin{cases}x+z-y=1\left(4\right)\\x+y+z=p\end{cases}}\)(Vì p là số nguyên tố) 

Lại có: \(x^2+y^2+z^2=p\Rightarrow m^4z^2+m^2z^2+z^2=p\) (Do x = m2z; y = mz)

\(\Leftrightarrow z^2\left(m^4+m^2+1\right)=p\Rightarrow\hept{\begin{cases}z=1\\m^4+m^2+1=p\end{cases}}\)(p nguyên tố)

Thay z=1 vào (4) ta có: \(x-y+1=1\Leftrightarrow x=y\)

\(m^4+m^2+1=p\Leftrightarrow\left(m^2+m+1\right)\left(m^2-m+1\right)=p\)

\(\Rightarrow m^2-m+1=1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=1\end{cases}}\)

+) Nếu m=0 thì: \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}=0\Rightarrow x+y\sqrt{2017}=0\)(Do \(y+z\sqrt{2017}\ne0\))

Mà x;y thuộc N* nên \(x+y\sqrt{2017}>0\)=> Loại.

+) Nếu m=1 thì \(x+y\sqrt{2017}=y+z\sqrt{2017}\Rightarrow y\sqrt{2017}=z\sqrt{2017}\)(x=y)

\(\Rightarrow y=z\Rightarrow x=y=z=1\) (Vì z=1) 

Khi đó: \(\hept{\begin{cases}\frac{x+\sqrt{2017}y}{y+\sqrt{2017}z}=1\\x^2+y^2+z^2=3\end{cases}}\) (thỏa mãn). Vậy x=y=z=1.