K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TV
1
TN
Tìm các số nguyên x,y,z thỏa mãn các điều kiện sau:
x2=y-1
y2=z-1
z2=x-1
Mình cần gấp!!!Giúp với!!!!!!!!
0
13 tháng 2 2016
TH1 x^2 - 1 = 0 .Vậy x^2 = 1 Suy ra x = 1 hoặc -1
TH2 y + 1 = 0 Suy ra y = -1
TL
2
KK
13 tháng 2 2016
a) (x^2-1).(y+1)=0
---> x^2-1=0 và y+1=0
Nếu x^2-1=0 thì x^2=1 nên x=1 hoặc x=-1
Nếu y+1=0 nên y=-1
13 tháng 2 2016
Để (x^2-1)(y+1)=0.Thì (x^2-1)=0 hoặc (y+1)=0
Nếu:x^2-1=0=>x=1
Nếu y+1=0=>y=0
14 tháng 9 2019
\(5^2+13+x^2=2^3\)
\(\Leftrightarrow38+x^2=8\)
\(\Leftrightarrow x^2=-30\)( loại vì x^2 luôn lớn hơn hoặc bằng 0)
Vậy ko có giá trị x nào thỏa mãn dề bài
14 tháng 9 2019
52 + ( 13 + x2 ) = 32
25 + 13 + x2 =9
x2 = -29 (vô lí) (vì x2>=0 với mọi x )
=> ko có già trị x thỏa mãn
Ta thấy : \(\left(x-y^2+z\right)^2\ge0\forall x,y,z\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\left(z+3\right)^2\ge0\forall z\)
Do đó : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x,y,z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2^2+\left(-3\right)=0\\y=2\\z=-3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(7,2,-3\right)\)
CẢM ƠN BN ĐẠT NHIỀU!!!!!!