Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{2\cdot3}=\frac{3\left(z-3\right)}{3\cdot4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}=\frac{14+\left(-6\right)}{8}=\frac{8}{8}=1\)
\(\Rightarrow\hept{\begin{cases}x=1\cdot2+1=3\\y=1\cdot3+2=5\\z=1\cdot4+3=7\end{cases}}\)
vậy_
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
a) Vì \(3x=\frac{2}{3}y=\frac{4}{5}z\)
\(\Rightarrow3x:12=\frac{2}{3}y:12=\frac{4}{5}z:12\)
\(\Rightarrow\frac{x}{4}=\frac{y}{18}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{18}=\frac{z}{15}=\frac{x-y-z}{4-18-15}=\frac{10}{-29}=\frac{-10}{29}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-10}{29}.4=\frac{-40}{29}\\y=\frac{-10}{29}.18=\frac{-180}{29}\\z=\frac{-10}{29}.15=\frac{-150}{29}\end{cases}}\)
Vậy ...
b) Ta có; \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)và \(x^2+2y^2-3z^2=-650\left(1\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được:
\(\left(2k\right)^2+2.\left(3k\right)^2-3.\left(4k\right)^2=-650\)
\(\Leftrightarrow4k^2+18k^2-48k^2=-650\)
\(\Leftrightarrow-26k^2=-650\)
\(\Leftrightarrow k^2=25\)
\(\Leftrightarrow k=\pm5\)
TH1: Thay k=5 vào (2) ta được:
\(\hept{\begin{cases}x=2.5=10\\y=3.5=15\\z=4.5=20\end{cases}}\)
TH2: Thay k=-5 vào (2) ta được:
\(\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\\z=-5.4=-20\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left\{\left(10;15;20\right);\left(-10;-15;-20\right)\right\}\)
x-1/2=2y-4/6=3z-9/12
áp dụng tính chất của dãy tỉ số bằng nhau
x-1/2=y-2/3=z-3/4=(x-2y+3z)-1+4-9/2-4+12
=-6/10