Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)
b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)
Tự tìm x,y,z nhé
c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)
(làm tương tự câu b)
d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)
đến đây chắc dễ rồi
e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)
Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1
(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x)
f)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
- Ta có: 3x-2y/37=5y-3z/15=2z-5x/2
Áp dụng tính chất dãy tỉ số bằng nhau: 3x-2y/37=5y-3z/15=2z-5x/2=0
Suy ra 3x-2y=0 thì 3x=2y thì x/2=y/3
5y-3z=0 thì 5y=3z thì y/3=z/5
2z-5x=0 thì 2z= 5x thì z/5=x/2
Suy ra: x/2=y/3=z/5
Áp dụng tính chất dãy tỉ số bằng nhau: x/2=y/3=z/5=(10x-3y-2z)/(20-9-10)=-4/1=-4
Suy ra x=-8 y=-12 z=-20
(3x-2y)/37=(5y-3z)/15 <=> 45x-30y=185y-111z <=> 452x-215y+111z=0 (1)
(5y-3z)/15=(2z-5x)/2 <=> 10y+6z=-75x+30z <=> 75x+10y-36z=0 (2)
10x-3y-2z=-4 (3)
Giải hệ (1), (2), (3) ta được: x=-8, y=-12, z=-20
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
a; Ta có: 2x=3y
nên x/3=y/2
=>x/21=y/14
Ta có: 5y=7z
nên y/7=z/5
=>y/14=z/10
=>x/21=y/14=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{15}=2\)
Do đó: x=42; y=28; z=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)
Do đó: x=165; y=20; z=25
c: x/3=y/4
nên x/15=y/20
y/5=z/7
nên y/20=z/28
=>x/15=y/20=z/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
Do đó: x=30; y=40; z=56
1.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2x10=20
y=2x15=30
z=2x21=42