\(|1-y|+|z+2y|+|x+y+z|=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Ta có : 

\(\left|1-y\right|\ge0\)

\(\left|z+2y\right|\ge0\)

\(\left|x+y+z\right|\ge0\)

\(\Rightarrow\left|1-y\right|+\left|x+2y\right|+\left|x+y+z\right|\ge0\)

Dấu \("="\)

\(\Leftrightarrow\hept{\begin{cases}\left|1-y\right|=0\\\left|z+2y\right|=0\\\left|x+y+z\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}1-y=0\\z+2y=0\\x+y+z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\z+2.1=0\\x+1+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\z+2=0\\x+1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\z=-2\\x+1+-2=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\z=-2\\x=1\end{cases}}\)

Vậy ...

7 tháng 7 2018

Ta có : 

\(\hept{\begin{cases}\left|1-y\right|\ge0\\\left|z+2y\right|\ge0\\\left|x+y+z\right|\ge0\end{cases}\Rightarrow\left|1-y\right|+\left|z+2y\right|+\left|x+y+z\right|\ge0}\)

Mà \(\left|1-y\right|+\left|z+2y\right|+\left|x+y+z\right|=0\) ( giả thiết ) 

Suy ra \(\hept{\begin{cases}\left|1-y\right|=0\\\left|z+2y\right|=0\\\left|x+y+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}1-y=0\\z+2y=0\\x+y+z=0\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}y=1\\z=\left(-2\right).1\\x=\left[1+\left(-2\right).1\right]\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\z=-2\\x=-1\end{cases}}}\)

Vậy \(x=-1\)\(;\)\(y=1\) và \(z=-2\)

Chúc bạn học tốt ~ 

3 tháng 2 2018

b) (x-3).(2y+1)=7 
(x-3).(2y+1)= 1.7 = (-1).(-7) 
Cứ cho x - 3 = 1 => x= 4 
2y + 1 = 7 => y = 3 
Tiếp x - 3 = 7 => x = 10 
2y + 1 = 1 => y = 0 
x-3 = -1 ...=> x = 2

3 tháng 2 2018

a) x + xy + y + 2 = 0

<=> x.(1 + y) + y + 2 = 0

<=> x.(1 + y) + y + 1 - 1 +2

<=> x.(1 + y) + (1 + y) + 1 = 0

<=> (1 + y).( x + 1) + 1 = 0

=> 1 + y \(\in\)Ư(1) =  { 1 ; -1 }

Ta lập bảng:

1+y1-1
x+1-11
x0-2
y-20

Kết luận: x = 0 ; y = -2

               x = -2; y = 0
 

17 tháng 1 2017

tịt ko thế

31 tháng 7 2017

Cho mk hỏi trước dấu trị tuyện đối là dấu j z ?

7 tháng 8 2017

ko có dấu j cả. Thôi ko cần giải đâu thầy mk giải rùi

11 tháng 7 2016

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

=> \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{-48}{-7}=\frac{48}{7}\)

=> x = 2 . 48 : 7 = \(\frac{96}{7}\)

     y = 48 . 3 : 7 = \(\frac{144}{7}\)

     z = 48 . 5 : 7 = \(\frac{240}{7}\)

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

\(=>\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{-48}{-7}=\frac{48}{7}\)

\(=>\frac{x}{2}=\frac{48}{7}=>x=......\)

\(=>\frac{2y}{6}=\frac{48}{7}=>y=......\)

\(=>\frac{3z}{15}=\frac{48}{7}=>z=......\)