y+z+1 x = x+z+2 y = x+y-3 z = 1 x+y+z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2024

Ta có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\) 

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y+z}=2\\\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\end{matrix}\right.\) 

Ta có: \(\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\) 

\(\dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow\left(x+y+z\right)+1=3x\)

\(\Rightarrow\dfrac{1}{2}+1=3x\)

\(\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)  

\(x+y+z=\dfrac{1}{2}\Rightarrow y+z=0\Rightarrow y=-z\)  

\(\dfrac{x+z+2}{y}=2\Rightarrow\dfrac{\dfrac{1}{2}+z+2}{-z}=2\Rightarrow\dfrac{5}{2}+z=-2z\)

\(\Rightarrow3z=-\dfrac{5}{2}\Rightarrow z=-\dfrac{5}{6}\)

\(\Rightarrow y=-\left(-\dfrac{5}{6}\right)=\dfrac{5}{6}\)

Vậy: \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{5}{6};-\dfrac{5}{6}\right)\)

11 tháng 10 2019

Ta có

\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)

Ap dụng  tính chất DTSBN

\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)

Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với

11 tháng 10 2019

Bạn còn thiếu 1 câu b mà

9 tháng 3 2020

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)

\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)

\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)

2=\(\frac{1}{x+y+z}\)(1)

Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)

Từ(1)=> x+y+1=2x(3)

             x+z+2=2y(4)

            z+y-3=2z(5)

Thay(2) vào (4) ta được: 0,5-y+2=2y

                              =>    2,5=3y

                             => y=\(\frac{5}{6}\)

Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x

                                            \(\frac{11}{6}\)=x

Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:

\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5

z=\(\frac{-13}{6}\)

      Vậy ............

chúc bn học tốt.

k cho mik nha                                    

4 tháng 3 2018

Bạn tra trên mạng là có ngay.

21 tháng 8 2016

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow y+z=\frac{1}{2}-x;x+z=\frac{1}{2}-y;z+y=\frac{1}{2}-x\)

THAY VÀO BIỂU THỨC TA CÓ:

\(\frac{\frac{1}{2}-x+1}{x}=2\Rightarrow\frac{3}{2}-x=2x\Rightarrow x=\frac{1}{2}\)

\(\frac{\frac{1}{2}-y+2}{y}=2\Rightarrow\frac{5}{2}-y=2y\Rightarrow y=\frac{5}{6}\)

\(\frac{\frac{1}{2}-z-3}{z}=2\Rightarrow\frac{-5}{2}-z=2z\Rightarrow z=-\frac{5}{6}\)

21 tháng 8 2016

\(\frac{y+z+1}{x}+\frac{x+z+2}{y}+\frac{x+y-3}{z}=\frac{y+x+1+x+z+2+x+y-3}{x+y+x}=\frac{2x+2y+2z}{x+y+z}=2.\)

\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}=0,5\)

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\)\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=0,5+1\)

\(\Leftrightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=1,5\)

\(\Leftrightarrow\frac{0,5+1}{x}=\frac{0,5+2}{y}=\frac{0,5-3}{z}=1,5\)

\(\Rightarrow\hept{\begin{cases}\frac{1,5}{x}=1,5\\\frac{2,5}{y}=1,5\\\frac{-2,5}{z}=1,5\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1,6\\z=-1,6\end{cases}}}\)

18 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau sau đây:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{\left(y+z+1\right)}{ }+\frac{\left(x+z+2\right)}{x+y+z}+\frac{\left(x+y-3\right)}{ }=2vi\left(x+y+z\ne0\right).Nênx+y+z=0,5\)

Thay kết quả này vào đề bài, ta được các phép tính như sau:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z+3}{z}=2\)
 

Tức: \(\frac{1,5-x}{x}=\frac{2,5-y+2}{y}=\frac{0,5-2}{z}=2\)

Vậy: \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{-5}{6}\)

Chúc bạn học tốt nha!

18 tháng 10 2016

mik suy nghĩ mãi ms ra đấy

7 tháng 11 2016

theo t/c dãy tỉ số bằng nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{2.\left(x+y+z\right)}{x+y+z}\)=2

=> \(\frac{1}{x+y+z}\) =2 => x+y+z =\(\frac{1}{2}\)

+) x+y+z = \(\frac{1}{2}\)

=> y+z = \(\frac{1}{2}\) - x

    x+ z =\(\frac{1}{2}\)  - y

   x+y = \(\frac{1}{2}\)  - z

7 tháng 11 2016

Còn dài lắm .Mk chưa lm hết

9 tháng 8 2016

Xét x+y+z=0

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=0\Rightarrow x=y=z=0\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(x+y+z=\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

  • Với \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)
  • Với \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\)
  • Với \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=-\frac{1}{2}\)

Vậy....

 

 

10 tháng 8 2016

x+y+z không thể = 0 , mẫu số mà :)

28 tháng 6 2018

Áp dụng TCDTSBN ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\end{cases}\Rightarrow\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+2\\3z=\frac{1}{2}-3\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}}\)

Vậy x=1/2,y=5/6,z=-5/6

9 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{y+z+1}{x}\)=\(\frac{x+z+2}{y}\)=\(\frac{x+y-3}{z}\)=\(\frac{2.\left(x+y+z\right)}{x+y+z}\)= 2

=> x + y + z = \(\frac{1}{2}\)

Tự tính nốt nha =)

10 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x
y + z + 1 =
y
x + z + 2 =
z
x + y − 3 =
x + y + z
2. x + y + z = 2
=> x + y + z =1/2

bn tự tn=nhs nốt nha

chúc bn hk tố @_@
 

15 tháng 8 2019

Theo TCDTSBN thì 4 phân thức đầu bằng với:\(\frac{2\left(x+y+z\right)}{x+y+z}\)=2

=>\(\hept{\begin{cases}x+y+z=\frac{1}{2}\\2x=y+z+1\\2y=x+z+1\end{cases}}\)và 2z=x+y+1

Đến đây bạn có thể tự giải được x,y,z

15 tháng 8 2019

Bạn tham khảo:
Câu hỏi của Phung Thi Thanh Thao - Toán lớp 7 - Học toán với OnlineMath