Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
Mà xyz = 20
\(\Rightarrow\)12k . 9k . 5k = 20
\(\Rightarrow\)540k3 = 20
\(\Rightarrow\)k3 = \(\frac{1}{27}\)
\(\Rightarrow\)k = ( -3 )
\(\Rightarrow\)x = -36 ; y = -27 ; z = -15
Ta có:
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\Leftrightarrow x=12k;y=9k;z=5k\) và \(xyz=20\)
\(\Rightarrow12k.9k.5k=20\)
\(\Rightarrow540k^3=20\Leftrightarrow k=\sqrt[3]{20:540}=\frac{1}{3}\)
\(\hept{\begin{cases}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{cases}}\)
Vậy x = 4; y = 3 ; z = 5/3
Ta có: \(\left[\begin{array}{nghiempt}xyz=20\\\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}xyz=20\\x=12k\\y=9k\\z=5k\end{array}\right.\)
\(\Rightarrow xyz=12k.9k.5k=540k^3\)
\(\Rightarrow20=540k^3\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\Rightarrow k^3=\left(\frac{1}{3}\right)^3\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow x=12k=12.\frac{1}{3}=4\)
\(\Rightarrow y=9k=9.\frac{1}{3}=3\)
\(\Rightarrow z=5k=\frac{5.1}{3}=\frac{5}{3}\)
TA CÓ X/12=Y/9=Z/5 =>X=12K;Y=9K;Z=5K
MÀ XYZ=20=>12K.9K.5K=20 HAY 540\(K^3\)=20
=>\(K^3\)=20/540=1/27=>\(K^3\)=\(\left(\frac{1}{3}\right)^3\)=>K=1/3
TỪ X/12=1/3=>X=4
Y/9=1/3=>Y=3
Z/5=1/3=>Z=5/3
VẬY X=4;Y=3;Z=5/3
TICK ĐÚNG CHO MIK NHA
Vì x: y : z = 12 : 9 : 5 nên \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)
Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=12k\\y=9k\\z=5k\end{cases}}\)
Thay vào ta có :
\(12k.9k.5k=20\)
\(540.k^3=20\)
\(k^3=\frac{1}{27}\)
\(k^3=\left(\frac{1}{3}\right)^3\)
\(k=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{1}{3}\\\frac{y}{9}=\frac{1}{3}\\\frac{z}{5}=\frac{1}{3}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=3\\z=\frac{5}{3}\end{cases}}\)
Đặt x/12 = y/9 = z/5 = k ta có:
x = 12k
y = 9k
z = 5k
=> x.y.z = 12k.9k.5k
=> k^3.540=20
=> k^3 = 1/27
=> k^3= (1/3)^3
=> k = 1/3
x/12=1/3 => x=4
y/9= 1/3 => y=3
z/5=1/3 =. z=5/3
Gọi \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
\(\Rightarrow xyz=12k.9k.5k=540k^3=20\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{1}{3}\Rightarrow x=\frac{1}{3}.12=4\)
\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=\frac{1}{3}.9=3\)
\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=\frac{1}{3}.5=\frac{5}{3}\)
Vậy \(x=4;y=3;z=\frac{5}{3}\)
a) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\left(1\right)\)
Ta có: xyz = 20 => 12k . 9k . 5k = 20
=> \(k^3.540=20\)
=> \(k^3=\dfrac{1}{27}\)
=> k = \(\dfrac{1}{3}\)
Thay \(k=\dfrac{1}{3}\) vào (1) ta có: x = 4; y = 3; z = \(\dfrac{5}{3}\)
Ta có : \(x:y:z=12:9:5\Rightarrow\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)
Ta có : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
⇒ \(x=12k\)
\(y=9k\)
\(z=5k\)
Mà \(x.y.z=20\)
\(\Rightarrow12k.9k.5k=20\)
\(k^3.540=20\)
\(k^3=20:540\)
\(k^3=\frac{1}{27}\)
\(k^3=\left(\frac{1}{3}\right)^3\)
\(k=\frac{1}{3}\)
⇒ \(\frac{x}{12}=\frac{1}{3}\Rightarrow x=12.\frac{1}{3}=4\)
\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=9.\frac{1}{3}=3\)
\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=5.\frac{1}{3}=\frac{5}{3}\)
Vậy \(x=4;y=3;z=\frac{5}{3}\)
Ta có: \(x:y:z=12:9:5.\)
=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và \(x.y.z=20\)
Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\)
Có: \(x.y.z=20\)
=> \(12k.9k.5k=20\)
=> \(540k^3=20\)
=> \(k^3=20:540\)
=> \(k^3=\frac{1}{27}\)
=> \(k=\frac{1}{3}.\)
+) Với \(k=\frac{1}{3}.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{3}.12=4\\y=\frac{1}{3}.9=3\\z=\frac{1}{3}.5=\frac{5}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;3;\frac{5}{3}\right).\)
Chúc bạn học tốt!
a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)
c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)
=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20
=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)
=>\(k=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)
d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z
x/12=y/9=z/5 = k => x = 12k ; y = 9k ; z = 5k
Thay vào ta được:
12k.9k.5k = 20
540k3 = 20
k3 = 1/27
Vậy k = 1/3
x = 1/3 . 12 = 4
y = 9.1/3 = 3
z = 1/3 . 5 = 5/3