Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có
1 = 1+0
Ta có bảng sau:
x-1 | 1 | 0 |
y-2 | 0 |
1 |
x | 2 | 1 |
y | 2 |
3 |
Vậy x=2 , y=2
x=1 , y=3
b) Ta có : 0=0+0
ta có bảng sau:
x+3 | 0 |
y | 0 |
x | -3 |
Vậy y=0 , x=-3
Câu 1: |x + 2| \(\le\)1 => |x + 2| = 0
=> x + 2 = 0
x = 0 - 2
x = -2
Câu 3: |x| + |y| + |z| = 0
Vì giá trị tuyệt đối phải là số lớn hơn hoặc bằng 0
=> |x| = 0, |y| = 0, |z| = 0
=> x = 0, y = 0, z = 0
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
Bài 1:
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{Z}\Rightarrow 2(y-3)^2=3-(x-1)^2\leq 3\)
\(\Rightarrow (y-3)^2\leq \frac{3}{2}\)
Mà \((y-3)^2\geq 0; (y-3)^2\in\mathbb{Z}\) nên \(\left[\begin{matrix} (y-3)^2=0\\ (y-3)^2=1\end{matrix}\right.\)
Nếu \((y-3)^2=0\):
\((x-1)^2=3-2(y-3)^2=3\) (vô lý với $x$ nguyên)
Nếu \((y-3)^2=1\Rightarrow y-3=\pm 1\Rightarrow \left[\begin{matrix} y=4\\ y=2\end{matrix}\right.\)
\((x-1)^2=3-2(y-3)^2=3-2=1\Rightarrow x-1=\pm 1\Rightarrow \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\)
Vậy \((x,y)=(0,4); (0,2); (2,4); (2,2)\)
Bài 2:
Dễ thấy vế trái của đẳng thức đã cho không âm (tính chất trị tuyệt đối)
\(\Rightarrow 2018x=\text{VT}\geq 0\Rightarrow x\geq 0\)
\(\Rightarrow \left\{\begin{matrix} |x+1|=x+1\\ |x+2|=x+2\\ |x+3|=x+3\\ ....\\ |x+2019|=x+2019\end{matrix}\right.\)
Phương trình trở thành:
\((x+1)+(x+2)+(x+3)+....+(x+2019)=2018x\)
\(\Leftrightarrow 2019x+2029095=2018x\)
\(\Leftrightarrow x=-2029095< 0\) (vô lý- loại)
Vậy không tồn tại $x$ thỏa mãn.
Bài 1 : Tính nhanh
a) 16.(38−2)−38(16−1)16.(38−2)−38(16−1)
b) (−41).(59+2)+59(41−2)(−41).(59+2)+59(41−2)
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3
thang king of king kia, chua hoc hang dang thuc a
thang Vinh ngu vay khong biet