\(\frac{x}{7}\)+\(\frac{y}{11}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

Ta có :

\(x=6,\left(622377\right);y=10,\left(406593\right);z=12,\left(298701\right)\)

25 tháng 12 2016

x/7 = y/11 = z/13 = 0,(946053) = 946053/999999 = 947/1001

=> x = 947/1001 . 7 = 947/143

y = 947/1001 . 11 = 947/91

z = 947/1001 . 13 = 947/7

tick nha :)))

25 tháng 12 2016

bn ơi mình nhầm z phải là 947/77 bn nhé

mk viết thiếu số 7

11 tháng 3 2020

Ta có phương trình \(\frac{x}{7}+\frac{y}{11}+\frac{z}{13}=\frac{946053}{99999}\)

\(\Leftrightarrow\frac{143x+91y+77z}{1001}=\frac{947}{1001}\)

\(\Leftrightarrow143x+91y+77z=947\)(1)

\(\Leftrightarrow7\left(13y+11z\right)=947-143x\)

Dễ thấy \(VT⋮7\Rightarrow947-143x⋮7\)

Mà y,z nguyên dương nên VT > 0 do đó \(947-143x>0\Leftrightarrow x\le6\)

+) x = 1 thì \(947-143.1=804\)không chia hết cho 7

+) x = 2 thì \(947-143.2=661\)không chia hết cho 7

+) x = 3 thì \(947-143.3=518\) chia hết cho 7 (tm)

+) x = 4 thì \(947-143.4=375\)không chia hết cho 7

+) x = 5 thì \(947-143.5=232\)không chia hết cho 7

+) x = 6 thì \(947-143.5=89\)không chia hết cho 7

Sau khi xét ta tìm được x = 3

Thay x = 3 vào phương trình (1), ta được \(13y+11z=74\)

\(\Leftrightarrow11z=74-13y\)

Vì z nguyên dương nên VT > 0 nên 74 - 13y > 0 và \(74-13y⋮11\)

\(\Rightarrow y< 6\)

+) y = 1 thì 74 - 13y = 61 không chia hết cho 11

+) y = 2 thì 74 - 13y = 48 không chia hết cho 11

+) y = 3 thì 74 - 13y = 35 không chia hết cho 11

+) y = 4 thì 74 - 13y = 22 chia hết cho 11 (tm)

+) y = 5 thì 74 - 13y = 9 không chia hết cho 11

Tóm lại, y = 4

Khi đó 11z = 22 nên z = 2

Vậy tìm được bộ ba số (x;y;z) thỏa mãn là (3;4;2)

8 tháng 2 2020

Tham khảo:

Chúc bạn học tốt!

30 tháng 12 2016

thì bạn cứ nhân cái số 0,... gì đó với các số 7,11,13 thì ra thứ tự lần lượt x,y,z. 7 là của x, 11 là của y và còn lại là của còn lại nha bạnbanhqua

30 tháng 12 2016

còn kết quả bạn cứ lấy máy tính bấm xong là ok

13 tháng 10 2017

\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)

\(\Leftrightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)

\(\Leftrightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x}{4}=\frac{y}{6}=\frac{3z}{45}\)

\(\Leftrightarrow\frac{x}{4}=\frac{y}{6}=\frac{3z}{45}=\frac{z+y-3z}{4+6-45}=\frac{2}{-35}\) ( áp dụng tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{2}{-35}\\\frac{y}{6}=\frac{2}{-35}\\\frac{3z}{45}=\frac{2}{-35}\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{8}{35}\\y=-\frac{12}{35}\\z=-\frac{6}{7}\end{cases}}\)