Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}\)= \(\frac{y}{3}\); \(\frac{y}{4}\)= \(\frac{z}{5}\)và x + y - z = 10
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\); \(\frac{y}{12}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)= \(\frac{x+y-z}{8+12-15}\)= \(\frac{10}{5}\)= 2
\(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Vậy x= 16
y= 24
z= 30
d) 2x = 3y ; 5x = 7z và 3x - 7y + 5x = 3
\(\Rightarrow\)\(\frac{x}{3}\)= \(\frac{y}{2}\); \(\frac{x}{7}\)= \(\frac{z}{5}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\); \(\frac{x}{21}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)\(\Rightarrow\)\(\frac{3x}{63}\)= \(\frac{7y}{98}\)= \(\frac{5z}{75}\)= \(\frac{3x-7y+5z}{63-98+75}\)= \(\frac{30}{40}\)=\(\frac{3}{4}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{3}{4}\\\frac{y}{14}=\frac{3}{4}\\\frac{z}{15}=\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{cases}}\)
Vậy x= \(\frac{63}{4}\)
y= \(\frac{21}{2}\)
z= \(\frac{45}{4}\)
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
a) \(2x=3y=7z\)
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}=\frac{3x-7y+5z}{63-98+30}=\frac{30}{-5}=-6\)
\(\Rightarrow\hept{\begin{cases}x=21.\left(-6\right)=-126\\y=14.\left(-6\right)=-84\\z=6.\left(-6\right)=-36\end{cases}}\)
b) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.8=16\\y=2.12=24\\z=2.15=30\end{cases}}\)
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)
Áp dụng t/c dãy tỉ số bằng nhau ,ta được:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)
Do đó: x=4
y=6
z=9
Vậy......
b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)
Vậy
d)
Đặt x/2=y/3=z/5=k
suy ra x = 2k, y=3k,z=5k
thay x=2k,y=3k,z=5k vào xyz= 810
ta có: 2k.3k.5k= 810
30k^3= 810
k^3= 810: 30
k^3 = 27
k^3 = 3^3
k=3
thay k=3,x=2k,y=3k,z=5k ta có:
suy ra{x=2.3,y= 3.3,z =5.3
x=6,y=9, z =15
vậy........
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}\) và \(x+2y-z=156\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+2\left(y+2\right)-\left(z-1\right)}{3+8-5}=\frac{x+1+2y+4-z+1}{6}=\frac{\left(x+2y-z\right)+1+4+1}{6}=\frac{156+6}{6}=27\)
\(\Rightarrow\hept{\begin{cases}x=\left(27.3\right)-1\\y=\left(27.4\right)-2\\z=\left(27.5\right)+1\end{cases}\Rightarrow\hept{\begin{cases}x=80\\y=106\\z=136\end{cases}}}\)
Ta có:
x + 1/3 = y + 2/4 = z - 1/5
=> x + 1/3 = 2y + 4/8 = z - 1/5
Áp dụng tính chất của dãy tỉ số = nhau ta có:
x + 1/3 = 2y + 4/8 = z - 1/5 = (x + 1) + (2y + 4) - (z - 1)/3 + 8 - 5
= (x + 2y - z) + (1 + 4 + 1)/6
= 156 + 6/6 = 162/6 = 27
=> x + 1 = 27.3; y + 2 = 27.4; z - 1 = 27.5
=> x + 1 = 81; y + 2 = 108; z - 1 = 135
=> x = 80; y = 106; z = 136
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{3x}{3.2}=\frac{2z}{2.\left(-4\right)}=\frac{3x-2z}{6-\left(-8\right)}=\frac{28}{14}=2\)
\(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=2.2=4\\\frac{y}{3}=2\Rightarrow y=2.3=6\\\frac{z}{-4}=2\Rightarrow z=-4.2=-8\end{cases}}\)
Vậy x=4,y=6,z=-8