Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(\Rightarrow \left\{\begin{matrix} 12x=15y\\ 20z=12x\\ 15y=20z\end{matrix}\right.\)
\(\Leftrightarrow 12x=15y=20z\Leftrightarrow \frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{15}+\frac{1}{20}}=\frac{48}{\frac{1}{5}}=240\)
\(\Rightarrow \left\{\begin{matrix} x=240.\frac{1}{12}=20\\ y=240.\frac{1}{15}=16\\ z=240.\frac{1}{20}=12\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{11}=\dfrac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)
\(\Leftrightarrow12x=15y=20z\Rightarrow\dfrac{x}{\dfrac{1}{12}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{20}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{1}{12}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x+y+z}{\dfrac{1}{12}+\dfrac{1}{15}+\dfrac{1}{20}}=\dfrac{48}{\dfrac{1}{5}}=240\)
\(\Rightarrow\left\{{}\begin{matrix}x=240.\dfrac{1}{12}\Rightarrow x=20\\y=240.\dfrac{1}{15}\Rightarrow y=16\\z=240.\dfrac{1}{20}\Rightarrow z=12\end{matrix}\right.\)
Vậy ...........................
Chúc bạn học tốt!
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
⇒\(\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)
⇔\(12x=15y=20z\)⇒\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{48}{12}=4\)
⇒\(\left\{{}\begin{matrix}x=5.4=20\\y=4.4=16\\z=3.4=12\end{matrix}\right.\)
a: =>x^2+2x-3=x^2-4
=>2x=-1
=>x=-1/2
b: \(\dfrac{12x-15y}{7}=\dfrac{20z-15x}{9}=\dfrac{15y-20z}{11}\)
\(=\dfrac{12x-15y+20z-15x+15y-20z}{7+9+11}=\dfrac{-3x}{27}=\dfrac{-x}{9}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-15y}{7}=\dfrac{-x}{9}\\\dfrac{20z-15x}{9}=\dfrac{-x}{9}\\\dfrac{15y-20z}{11}=\dfrac{-x}{9}\\x+y+z=48\end{matrix}\right.\)
\(\Leftrightarrow\begin{matrix}-115x+135y=0\\20z-14x=0\\135y-180z+11x=0\\x+y+z=48\end{matrix}\)
=>\(\left(x,y,z\right)\in\varnothing\)
Ta có:
\(\dfrac{12x-15y}{2017}=\dfrac{20z-12x}{2018}=\dfrac{15y-20z}{2019}\)
\(=\dfrac{12x-15y+20z-12x+15y-20z}{2017+2018+2019}\)
\(=\dfrac{0}{2017+2018+2019}=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x-15y=0\\20z-12x=0\\15y-20z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)\(\Rightarrow12x=15y=20z\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tích chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{48}{12}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.5=20\\y=4.4=16\\z=4.3=12\end{matrix}\right.\)
Vậy ...
giúp mk bài này với
Câu hỏi của Lalisa Manoban - Toán lớp 7 | Học trực tuyến
Theo đề ta có
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{\left(12x-15y\right)+\left(20z-12x\right)+\left(15y-20z\right)}{7+9+11}\)
\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
=>12x=15y =>12x=15y=20z
20z=12x
=>\(\frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}\)
=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
=>x=4.5=20
y=4.4=16
z=4.3=12
Giải
Áp dụng tính chất của dãy các tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15x+20z-12x+15y-20z}{7+9+11}\)\(=\frac{0}{27}=0\)
\(\Rightarrow12x=15y=20z\)
\(\Rightarrow\frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Lại áp dụng tính chất của dãy các tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{48}{5+4+3}=\frac{48}{12}=4\)
\(\Rightarrow\hept{\begin{cases}x=5.4=20\\y=4.4=16\\z=3.4=12\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)
\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Xét:
\(\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\)
Ta có: \(\frac{x}{15}=\frac{y}{60}=\frac{z}{45}\Leftrightarrow\frac{x}{75}=\frac{y}{60}\) và \(\frac{y}{20}=\frac{z}{15}\Leftrightarrow\frac{y}{60}=\frac{z}{45}\)
\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
Với \(\frac{x}{75}=\frac{4}{15}\Rightarrow15x=4\times75\Rightarrow15x=300\Rightarrow x=20\)
Với \(\frac{y}{60}=\frac{4}{15}\Rightarrow15y=4\times60\Rightarrow15y=240\Rightarrow y=16\)
Với \(\frac{z}{45}=\frac{4}{15}\Rightarrow15z=4\times45\Rightarrow15z=180\Rightarrow z=12\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(\Rightarrow\left\{\begin{matrix}\frac{12x-15y}{7}=0\Rightarrow12x-15y=0\Rightarrow\frac{x}{15}=\frac{y}{20}\\\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow\frac{y}{20}=\frac{z}{15}\\\frac{20z-12x}{9}=0\Rightarrow20z-12x=0\Rightarrow\frac{z}{20}=\frac{x}{12}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
\(\Rightarrow\left\{\begin{matrix}x=75.\frac{4}{15}=20\\y=60.\frac{4}{15}=16\\z=45.\frac{4}{15}=12\end{matrix}\right.\)
Vậy: \(\left\{\begin{matrix}x=20\\y=16\\z=12\end{matrix}\right.\)
75 ở đâu ra vậy ạ??