Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left[\begin{array}{nghiempt}x-9=15k\\y-12=20k\\z-24=40k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=15k+9\\y=20k+12\\z=40k+24\end{array}\right.}\)
ta có:
x.y=1200\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\Rightarrow\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}=k\)
=> (15k+9)(20k+12)=1200
=> 3.4(5k+3)(5k+3)=1200
=> (5k+3)2=100
=> 5k+3=\(\pm\)10
=> \(\left[\begin{array}{nghiempt}5k+3=10\\5k+3=-10\end{cases}\Rightarrow\left[\begin{array}{nghiempt}5k=7\\5k=-13\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}k=\frac{7}{5}\\k=-\frac{13}{5}\end{array}\right.}\)
* với k=7/5
x=7/5x15+9=30
y=7/5x20+12=40
z=7/5x40+24=80
* với k=-13/5
x=-13/5x15+9=-30
y=-13/5x20+12=-40
z=-13/5x40+24=-80
b)
\(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21}\Rightarrow\frac{x-30}{40}=\frac{y-50}{20}=\frac{z-21}{28}k=\)
=>\(\left[\begin{array}{nghiempt}x-30=40k\\y-50=20k\\z-21=28k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=40k+30\\y=20k+50\\z=28k+21\end{array}\right.}\)
ta có:
x.y.z=22400
=> (40k+30)(20k+50)(28k+21)=22400
c) 15x=-10y=6z
\(\Rightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=-\frac{y}{3}=\frac{z}{5}=k\)
=> \(\left[\begin{array}{nghiempt}x=2k\\y=-3k\\z=5k\end{array}\right.\)
ta có:
x.y.z=30000
=> 2k.(-3k).5k=30000
=> k3=1000
=> k=10
ta có: x=10x2=20
y=10.(-3)=-30
z=10.5=50
40/x-30=20/y-15=28/z-21 => 40/x-40/30=20/y-20/15=28/z-28/21 => 40/x-4/3=20/y-4/3=28/z-4/3
<=> 40/x=20/y=28/z=K => x=40.K; y=20.K; z=28.K
<=> xyz=40.20.28.K3 => xyz=22400.K3
<=>K3=1 => K=+-1
<=> x=40.K = 40.1=40 (1)
=40.(-1)=-40
TH(1): x=40 => y=20; z =28
TH(2); x=-40 => y=-20; z=-28
vậy x=40; y=20; z =28
hoặc x=-40; y=-20; z=-28
câu b làm y vậy đó bạn đổi 15x=-10y=6z=>x/1/15=y/-1/10=z/1/6
\(\frac{40}{x-30}=\frac{20}{y-15}=>2y-30=x-30=>x=2y.\)
Tương tự: \(\frac{40}{x-30}=\frac{28}{z-21}< =>\frac{10}{x-30}=\frac{7}{z-21}=>10z-210=7x-210=>7x=10z\)
\(\frac{20}{y-15}=\frac{28}{z-21}< =>\frac{5}{y-15}=\frac{7}{z-21}=>5z-105=7y-105=>7y=5z\)
Ta có: x.y.z=22400 <=> 2y.y.7y/5=22400
=> y3=22400.5/14=8000=203 => y=20 => z=7.20:5=28 ; x=2.20=40
Đáp số: x=40; y=20; z=28
Từ đẳng thức : \(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\)
\(\Rightarrow1:\frac{40}{x-30}=1:\frac{20}{y-15}=1:\frac{28}{z-21}\)
\(\Rightarrow\frac{x-30}{40}=\frac{y-15}{20}=\frac{z-21}{28}\)
\(\Rightarrow\frac{x}{40}-\frac{3}{4}=\frac{y}{20}-\frac{3}{4}=\frac{z}{28}-\frac{3}{4}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}=k\Rightarrow\hept{\begin{cases}x=40k\\y=20k\\z=28k\end{cases}}\)
Khi đó : xyz = 22400
<=> 40k.20k.28k = 22400
=> 22400.k3 = 22400
=> k3 = 1
=> k3 = 13
=> k = 1
Khi đó : x = 40.1 = 40 ;
y = 20.1 = 20;
z = 28.1 = 28
Vậy x = 40 ; y = 20 ; z = 28
Ta có:\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\)
hay\(\frac{x-30}{40}=\frac{y-15}{20}=\frac{z-21}{28}\)
\(=\frac{x}{40}-\frac{3}{4}=\frac{y}{20}-\frac{3}{4}=\frac{z}{28}-\frac{3}{4}\)
\(\Rightarrow\)\(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\)\(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}=\frac{x.y.z}{40.20.28}=\frac{22400}{22400}=1\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{x}{40}=1\\\frac{y}{20}=1\\\frac{z}{28}=1\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}}\)
Vậy x=40; y=20; z=28
Tìm x;y;z biết
a) \(5x=8y=3z\text{ và }x-2y+z=34\)
Giải
Từ \(5x=8y=3z\)
\(\Rightarrow\hept{\begin{cases}5x=8y\\8y=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{5}\\\frac{y}{3}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{24}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{40}\end{cases}\Rightarrow}\frac{x}{24}=\frac{y}{15}=\frac{z}{40}\Rightarrow\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{24}=\frac{y}{15}=\frac{z}{40}=\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}=\frac{x-2y+z}{24-30+40}=\frac{34}{34}=1\)
\(\Rightarrow x=24.1=24;\)
\(y=15.1=15;\)
\(z=40.1=40\)
Vậy x = 24; y = 15 ; z = 40
b) \(15x=10y=6z\text{ và }xyz=-1920\left(1\right)\)
Giải
Từ \(15x=10y=6z\)
\(\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{6}=\frac{z}{10}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{30}\\\frac{y}{30}=\frac{z}{50}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{30}=\frac{z}{50}}\)
Đặt \(\frac{x}{20}=\frac{y}{30}=\frac{z}{50}=k\)
\(\Rightarrow x=20k;y=30k;z=50k\left(2\right)\)
Thay (2) vào (1) ta có :
\(\)\(20k.30k.50k=-1920\)
\(\Rightarrow k^3.30000=-1920\)
\(\Rightarrow k^3=-\frac{1920}{30000}\)
\(\Rightarrow k^3=-\frac{64}{1000}\)
\(\Rightarrow k^3=-\frac{4^3}{10^3}\)
\(\Rightarrow k^3=\left(-\frac{4}{10}\right)^3\)
\(\Rightarrow k=-\frac{4}{10}\)
Khi đó : \(x=-\frac{4}{10}.20=-8;\)
\(y=-\frac{4}{10}.30=-12;\)
\(z=-\frac{4}{10}.5=-20\)
Vậy x = - 8 ; y = - 12 ; z = - 20
c) \(x^3 +y^3+z^3=792\left(1\right)\text{ và }\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Giải
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow x=2k;y=3k;z=4k\left(2\right)\)
Thay (2) vào (1) ta có :
\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=792\)
\(\Rightarrow k^3.2^3+k^3.3^3+k^3.4^3=792\)
\(\Rightarrow k^3.8+k^3.27+k^3.64=792\)
\(\Rightarrow k^3.\left(8+27+64\right)=792\)
\(\Rightarrow k^3.99=792\)
\(\Rightarrow k^3=8\)
\(\Rightarrow k^3=2^3\)
\(\Rightarrow k=2\)
Khi đó \(x=2.2=4;\)
\(y=3.2=6;\)
\(z=4.2=8\)
Vậy x = 4 ; y = 6 ; z = 8