K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

a,  42-3/y-3/ =4(2012-x)4

24 tháng 3 2018

\(42-3\left|y-3\right|=4\left(2012-x\right)^4\)

\(\Leftrightarrow42-3\left|y-3\right|=4\left(2012-x\right)^2=0\)

thấy: \(\hept{\begin{cases}\left(2012-x\right)^4\ge0\forall x\\\left|y-3\right|\ge0\forall y\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4\left(2012-2\right)^4\ge0\forall x\\3\left|y-3\right|\ge0\forall y\end{cases}\Rightarrow\hept{\begin{cases}-4\left(2012-2\right)^4\le0\forall x\\-3\left|y-3\right|\le0\forall y\end{cases}}}\)

\(\Rightarrow-3\left|y-3\right|-4\left(2012-x\right)^4\le0\forall x,y\)

\(\Rightarrow42-3\left|y-3\right|-4\left(2012-x\right)^4\le42\forall x,y\)

xảy ra khi và chỉ khi \(\hept{\begin{cases}-4\left(2012-x\right)^4=0\\-3\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2012-x=0\\y-3=0\end{cases}}\Rightarrow}\hept{\begin{cases}x=2012\\x=3\end{cases}}\)

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

31 tháng 10 2019

\(a)x^2-5x+6\)

\(=x^2-2x-3x+6\)

\(=x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(x-3\right)\)

\(b)x^3-5x^2+8x-4\)

\(=x^3-x^2+x^2-5x^2+8x-4\)

\(=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\)

\(c)x^2-5x-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

Bài 3

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+y+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)