Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x - / 2x + 1/=2
Ta co: /2x+1/ lon hon hoac bang 0
ma 3x- / 2x+1/ = 2
=> 3x la so tu nhien
=>3x-/2x+1/ = 3x - 2x+1 = 2
=>3x - 2x = 1
=>x(3-2) = 1
=>x . 1 = 1
=> x=1
KL........\
Tich cho minh nhe ! Cau b dang suy nghi .
a) Ta co: /2x+1/ lon hon hoac bang 0
ma 3x - /2x+1/ = 2
=> 3x la so tu nhien
=> 3x - /2x+1/ = 3x -2x +1 = 2\
=> 3x -2x =1
=>x=1
tick cho minh nha!!!!! Thank you nhieuuuuuuuuu !!!!
Có :\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{2x^2}{2.2^2}=\frac{3y^3}{3.3^3}\Rightarrow\frac{2x^2}{8}=\frac{3y^3}{81}\)
Áp dụng t/c dãy tỉ số bằng nhau có:
\(\frac{x}{2}=\frac{y}{3}=\frac{2x^2}{8}=\frac{3y^3}{81}=\frac{2x^2+3y^3}{8+81}=\frac{97}{89}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{97}{89}\Rightarrow x=\frac{194}{89}\\\frac{y}{3}=\frac{97}{89}\Rightarrow y=\frac{291}{89}\end{cases}}\)
Vậy..............................
a, \(|x-1|+|2x-y+3|=0\)
Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)
b, \(|x-y|+|x+y-2|=0\)
Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)
c, \(|x+y-1|+|2x-3y|=0\)
Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)
Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)
\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)
a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)
b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)
a) \(\frac{x}{y}=\frac{5}{7}\)=>\(\frac{x}{5}=\frac{y}{7}=>\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\frac{xy}{5.7}\)
=>\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{35}{35}=1\)
=> \(x^2=25;y^2=49\)
=>\(x=\pm5;y=\pm7\)
\(\hept{\begin{cases}3x=2y\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}.x\\2x+\frac{3}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{3}{2}.x\\\frac{7}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{6}{7}\\y=\frac{9}{7}\end{cases}}}\)
\(\hept{\begin{cases}\frac{x}{3}=\frac{3y}{4}\\3x-y=4\end{cases}\Leftrightarrow\hept{\begin{cases}4x=9y\\3x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9y}{4}\\\frac{3.9}{4}y-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\\frac{23}{4}.y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\y=\frac{16}{23}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{36}{23}\\y=\frac{16}{23}\end{cases}}}\)
Các phần sau làm tương tự nhé
Lời giải:
Vì $|3x-y|+|3y-1|+3|y-1|=2$ mà mỗi số $|3x-y|, |3y-1|, |y-1|$ đều không âm nên $3|y-1|\leq 2$
Mà $3|y-1|\geq 0$ và $3|y-1|\vdots 3$ nên $3|y-1|=0$
$\Rightarrow y=1$
Khi đó: $|3x-1|+|2|+3.0=2$
$\Rightarrow |3x-1|=0$
$\Rightarrow x=\frac{1}{3}$ (vô lý vì $x$ nguyên)
Vậy không tồn tại $x,y$ thỏa mãn đề.