Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + y2 - 2x + 4y + 5 = 0
\(\Leftrightarrow\)( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
\(\Leftrightarrow\)( x - 1 )2 + ( y + 2 )2 = 0
\(\Rightarrow\)x - 1 = 0 và y + 2 = 0
\(\Rightarrow\)x = 1 và y = - 2
Vậy : x = 1 và y = - 2
b) 4x2 + 9y2 - 4x - 6y + 2 = 0
\(\Leftrightarrow\)[ ( 2x )2 - 4x + 1 ] + [ ( 3y )2 - 6y + 1 ] = 0
\(\Leftrightarrow\)( 2x - 1 )2 + ( 3y - 1 )2 = 0
\(\Rightarrow\)2x - 1 = 0 và 3y - 1 = 0
\(\Rightarrow\)x = 1 / 2 và y = 1 / 3
Vậy : x = 1 / 2 và y = 1 / 3
a) \(x^2+y^2-2x+4y+5=0\)
\(x^2+y^2-2x+4y+1+4=0\)
\(\left(x^2-2x+1\right)\left(y^2+4y+4\right)=0\)
\(\left(x-1\right)^2\left(y+2\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
b) \(4x^2+9y^2-4x-6y+2=0\)
\(\left(4x^2-4x+1\right)\left(9y^2-6y+1\right)=0\)
\(\left(2x-1\right)^2\left(3y-1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\3y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{3}\end{cases}}}\)
Ta có:
\(x^2+2x+9y^2-6y+3=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(9y^2-6y+1\right)+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(3y-1\right)^2+1=0\)
Vì \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(3y-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2+\left(3y-1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(3y-1\right)^2+1\ge1>0\)
Vậy không tồn tại x và y để thỏa mãn đề bài...!
\(4x^2-4x+1+9y^2-6y+1+16z^2-8z+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\x=\frac{1}{4}\end{cases}}\)
vay ................................................
Ta có :
4x2 + 9y2 + 16z2 - 4x - 6y - 8z + 3 = 0
( 2x ) 2 + ( 3y)2 + ( 4z)2 - 4x - 6y - 8z + 3 = 0
\([\left(2x\right)^2-2.2x+1]+[\left(3y\right)^2-2.3y+1]+[\left(4z\right)^2-2.4z+1]=0\)=0
( 2x-1)2 + ( 3y -1 )2 + ( 4z - 1) 2 = 0
Mà ( 2x-1)2 \(\ge\)0 với mọi x
( 3y-1 )2 \(\ge0\)với mọi y
( 4z - 1) 2 \(\ge0\)với mọi z
nên \(\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}\)
Vậy x = 1/2 ; y = 1/3 ; z = 1/4
\(a)\)
\(A=2x^2+x\)
\(\Leftrightarrow A=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
\(MinA=\frac{-1}{8}\)khi \(x=\frac{-1}{4}\)
\(b)\)
\(B=x^2+2x+y^2-4y+6\)
\(\Leftrightarrow B=x^2+2x+1+y^2-4y+4+1\)
\(\Leftrightarrow B=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu '' = '' xảy ra khi: \(x=-1;y=2\)
\(c)\)
\(C=4x^2+4x+9y^2-6y-5\)
\(\Leftrightarrow C=4x^2+4x+1+9y^2-6y+1-7\)
\(\Leftrightarrow C=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
Dấu '' = '' xáy ra khi: \(x=\frac{-1}{2};y=\frac{1}{3}\)
\(a.A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4>0\text{∀}x\)
\(b.B=x^2-2x+9y^2-6y+3=x^2-2x+1+9y^2-6y+1+1=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\text{∀}x,y\)
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
x2 -2x+9y2-6y+2=0
=> x2 - 2x.1 + 12 + (3y)2 - 2.3y.1 + 12 = 0
=> ( x - 1 )2 + ( 3y - 1 )2 = 0
Vì ( x -1 )2 \(\ge\)0
( 3y - 1 )2 \(\ge\)0
=> ( x - 1 )2 + ( 3y - 1 ) 2 \(\ge\)0
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-1=0\\3y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\3y=1\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)
Vậy \(x=1\) và \(y=\frac{1}{3}\)
Study well
\(x^2-2x+9y^2-6y+2=0\)
\(\Rightarrow x^2-2x+1+\left(3y\right)^2-6y+1=0\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(3y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}}\)
Vậy.......