![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ \(x+y=4\Rightarrow y=4-x\)
\(\Rightarrow\left|x+2\right|+\left|y\right|=\left|x+2\right|+\left|4-x\right|=6\)(1)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :
\(\left|x+2\right|+\left|4-x\right|\ge\left|x+2+4-x\right|=6\)
Vậy để (1) xảy ra \(\Leftrightarrow\left(x+2\right)\left(4-x\right)\ge0\Leftrightarrow-2\le x\le4\)
Với x = - 2 thì y = 6 ; x = - 1 thì y = 5; x = 0 thì y = 4; x = 1 thì y = 3; x = 2 thì y = 2 ; x = 3 thì y = 1; x = 4 thì y = 0
Vậy \(\left(x;y\right)=\left\{\left(-2;6\right);\left(-1;5\right);\left(0;4\right);\left(1;3\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}=0\)
Ta có : \(\hept{\begin{cases}\left(\frac{3x-5}{9}\right)^{2018}\ge0\forall x\\\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{3x-5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\3y+0,4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{2}{15}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(\left(x-10\right)^2\ge0\forall x\inℝ\)
\(\left|10-x\right|\ge0\forall x\inℝ\)
\(\Rightarrow\left(x-10\right)^2-\left|10-x\right|\ge0\forall x\inℝ\)
\(\Rightarrow\left(x-10\right)^2-\left|10-x\right|=0\)\(\Leftrightarrow\orbr{\begin{cases}\left(x-10\right)^2=0\\\left|10-x\right|=0\end{cases}\Rightarrow}\orbr{\begin{cases}x-10=0\\10-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=10\\x=10\end{cases}}\)
Vậy x = 10
P/s: E lp 5 nên làm đại -_- Ko chắc
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : Nhân vế cả ba đẳng thức ta có :
xy.yz.zx = 3.2.54
=> (x)2.(y)2.(z)2 = 324
=> (x.y.z)2= 182=(-18)2
Nếu xyz = 18 cùng với xy = 3 nên z = 6,cùng với yz = 2 thì x = 9 , cùng với zx = 54 thì y = 1/3.
Tương tự nếu xyz = -18 cùng với xy = 3 nên z = -6,cùng với yz = 2 thì x = -9 , cùng với zx = 54 thì y = -1/3.
Bài 2 :
Do 1/2x + 3 >= 0
2,5 - 3y >= 0
=> |1/2x + 3| + |2,5-3y| = 0
Do đó x = -6 , y = 7/6
![](https://rs.olm.vn/images/avt/0.png?1311)
| x - 2y | = 5
\(\Rightarrow\)\(\orbr{\begin{cases}x-2y=5\\x-2y=-5\end{cases}}\)
Theo bài ra : 2x = 3y = 5z
\(\Rightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{3x}{45}=\frac{2y}{20}=\frac{2z}{12}=\frac{3x-2z}{45-12}=\frac{x-2y}{15-20}\)
+) với x- 2y = 5 thì \(\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=-1\)\(\Rightarrow3x-2z=-33\)
+) với x - 2y = -5 thì \(\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=1\)\(\Rightarrow3x-2z=33\)
Vậy GTLN của 3x - 2z là 33
\(2x=3y\Leftrightarrow x=\frac{3y}{2}\)
Vậy ...
\(\left|\frac{3y}{2}-2y\right|=5\)" thay \(x=\frac{3y}{2}\)vào "
\(\left|\frac{3y-4y}{2}\right|=5\)" quy đồng"
\(\left|\frac{-y}{2}\right|=5\)" rút gọn
Giá trị tuyệt đối với -y ta được:
\(\frac{y}{2}=5\Leftrightarrow y=10\)
Tương tự ta có :
\(x=\frac{5z}{2};2y=\frac{10z}{3}\)
\(\left|\frac{5z}{2}-\frac{10z}{3}\right|=5\Leftrightarrow\left|\frac{15z-20z}{6}\right|=5\Leftrightarrow\left|\frac{-5z}{6}\right|=5\)
Gía trị tuyệt đối với -5z âm ta được :
\(5z=30\Leftrightarrow z=6\)
Tương tự với x suy ra x = 15 "làm tắt "
Từ 1,2,3
Suy ra x = 15 ; y = 10 ; z = 6
Thay số ta được :
\(3.15-2.6=45-12=33\)
|3x-4|+|3y+5|=0
=>|3x-4|=0 và |3y+5|=0
Với |3x-4|=0 =>3x-4=0 =>3x=4 =>\(x=\frac{4}{3}\)
Với |3y+5|=0 =>3y+5=0 =>3y=-5 =>\(y=\frac{-5}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{-5}{3}\)