\(x,y\inℤ\)thỏa mãn: \(x^3+2x^2+3x+2=y^3\)

P/S: Các...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

     \(4x^2+4y^2-12x-12y+20=0\)

\(\Leftrightarrow\)\(4x^2-12x+9+4y^2-12y+9+2=0\)

\(\Leftrightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2=0\)

Vì   \(\left(2x-3\right)^2\ge0;\) \(\left(2y-3\right)^2\ge0\)

\(\Rightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2\ge2\)

Vậy pt vô nghiệm

24 tháng 4 2018

\(4x^2-12x+9+4y^2-12y+9+2=0\)

mặt khác

\(\left(2x-3\right)^2+ \left(2y-3\right)^2+2=0\)

\(\left(2x-3\right)^2+\left(2y-3\right)^2\ge0\)

\(\Rightarrow\left(2x-3\right)^2+\left(2y-3\right)^2+2>0\)

=> PTVN

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

19 tháng 5 2018

hoc penta chua

20 tháng 5 2018

Ta có: \(x^2-xy+y^2-x-y=0\) 

\(\Leftrightarrow x^2-x\left(y+1\right)+y^2-y=0\) 

\(\Leftrightarrow4x^2-4x\left(y+1\right)+\left(y+1\right)^2-\left(y^2+2y+1\right)+4y^2-4y=0\) 

\(\Leftrightarrow4x^2-4x\left(y+1\right)+\left(y+1\right)^2+3y^2-6y-1=0\) 

\(\Leftrightarrow\left(2x-y-1\right)^2+3\left(y+1\right)^2=4\)  

Do \(x,y\in Z\Rightarrow\left(2x-y-1\right)^2;\left(y+1\right)^2\ge0\) 

\(\Rightarrow3\left(y+1\right)^2\le4\)

\(\Rightarrow\left(y+1\right)^2\le\frac{3}{4}\)  

Sau đó bạn xét từng giá trị nhé

5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x

22 tháng 7 2020

ta có \(y^3-x^3=2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\Rightarrow y>x\)

\(\left(x+2\right)^3-y^3=4x^2+9x+6=\left(2x+\frac{9}{4}\right)^2+\frac{15}{16}>0\Rightarrow y< x+2\)

Vậy x<y<x+2 mà x,y thuộc Z => y=x+1

thay y=x+1 vào phương trình ta được:

\(x^3+2x^2+3x+2=\left(x+1\right)^3\)

\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^3+3x+1\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

với x=1 thì y=x+1=2

với x=-1 thì y=x+1=0

Vậy phương trình đã cho có 2 nghiệm (x;y)=(1;2);(-1;0)

22 tháng 7 2020

Bài này không có điều kiện x, y nhưng ít nhất là x, y là số nguyên nhé!

+) Ta thấy x = 0 không có y nguyên thỏa mãn

+)\(\left(x+1\right)^3=x^3+3x^2+3x+1\ge x^3+2x^2+3x+2>x^3\)

Mà \(x^3+2x^2+3x+2\)là lập phương của số tự nhiên nên ta có: \(x^3+2x^2+3x+2=x^3+3x^2+3x+1\)

Từ đây tìm được x=1, y=2