Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-xy+y^2-x-y=0\)
\(\Leftrightarrow x^2-x\left(y+1\right)+y^2-y=0\)
\(\Leftrightarrow4x^2-4x\left(y+1\right)+\left(y+1\right)^2-\left(y^2+2y+1\right)+4y^2-4y=0\)
\(\Leftrightarrow4x^2-4x\left(y+1\right)+\left(y+1\right)^2+3y^2-6y-1=0\)
\(\Leftrightarrow\left(2x-y-1\right)^2+3\left(y+1\right)^2=4\)
Do \(x,y\in Z\Rightarrow\left(2x-y-1\right)^2;\left(y+1\right)^2\ge0\)
\(\Rightarrow3\left(y+1\right)^2\le4\)
\(\Rightarrow\left(y+1\right)^2\le\frac{3}{4}\)
Sau đó bạn xét từng giá trị nhé
2) \(x^4-x^2+2x+2\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1+2\right)\left(x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(=\left(x^2+x\right)^2\)
Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x
ta có \(y^3-x^3=2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\Rightarrow y>x\)
\(\left(x+2\right)^3-y^3=4x^2+9x+6=\left(2x+\frac{9}{4}\right)^2+\frac{15}{16}>0\Rightarrow y< x+2\)
Vậy x<y<x+2 mà x,y thuộc Z => y=x+1
thay y=x+1 vào phương trình ta được:
\(x^3+2x^2+3x+2=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^3+3x+1\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
với x=1 thì y=x+1=2
với x=-1 thì y=x+1=0
Vậy phương trình đã cho có 2 nghiệm (x;y)=(1;2);(-1;0)
Bài này không có điều kiện x, y nhưng ít nhất là x, y là số nguyên nhé!
+) Ta thấy x = 0 không có y nguyên thỏa mãn
+)\(\left(x+1\right)^3=x^3+3x^2+3x+1\ge x^3+2x^2+3x+2>x^3\)
Mà \(x^3+2x^2+3x+2\)là lập phương của số tự nhiên nên ta có: \(x^3+2x^2+3x+2=x^3+3x^2+3x+1\)
Từ đây tìm được x=1, y=2
\(4x^2+4y^2-12x-12y+20=0\)
\(\Leftrightarrow\)\(4x^2-12x+9+4y^2-12y+9+2=0\)
\(\Leftrightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2=0\)
Vì \(\left(2x-3\right)^2\ge0;\) \(\left(2y-3\right)^2\ge0\)
\(\Rightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2\ge2\)
Vậy pt vô nghiệm
\(4x^2-12x+9+4y^2-12y+9+2=0\)
mặt khác
\(\left(2x-3\right)^2+ \left(2y-3\right)^2+2=0\)
\(\left(2x-3\right)^2+\left(2y-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+\left(2y-3\right)^2+2>0\)
=> PTVN