\(x,y\inℤ\)sao cho:\(3x^2+4y^2=6x+13\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

pt <=> 3x^2-6x+4y^2 = 13

<=> (3x^2-6x+3)+4y^2 = 16

<=> 3.(x-1)^2+4y^2 = 16

<=> 3.(x-1)^2 < = 16

<=> (x-1)^2 < = 16/3

Mà (x-1)^2 > = 0

=> 0 < = (x-1)^2 < = 16/3

Mặt khác x thuộc Z nên x-1 thuộc Z => (x-1)^2 thuộc N

=> (x-1)^2 thuộc {0;1;4}

Đến đó bạn tự tìm x,y nha

Tk mk nha

27 tháng 6 2018

Cảm ơn ạ

14 tháng 7 2018

Câu a)

\(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)

Đến đây bạn tự giải tiếp và tìm nghiệm nha!

Câu c)

\(7x^2=2013-12y^2\Rightarrow7x^2< 2013\Leftrightarrow x\le16\)

Đến đây ta nhận xét rằng vế trái lẻ và chia  hết cho 3. Vậy bạn chỉ cần thử 3 giá trị của x là 3, 9, 15
Hiện tại mình đang bận nên chưa tiện giải hết.
Khi nào mình giải tiếp nha!

x2 + 3x - 13 

= x2 - 4x + 4 + 7x - 14 - 3 

= ( x - 2 )2 + 7( x - 2 ) - 3 

Để ( x - 2 )2 + 7( x - 2 ) - 3  \(⋮\)x - 2 

=>  -3 \(⋮\)x - 2

=> x - 2 \(\in\)Ư ( -3 ) = \(\left\{\pm1;\pm3\right\}\)Lập bảng 

x - 2               -3             -1                1               3 
x               -1             1                3               5

Vậy x \(\in\){ - 1 ; 1 ; 3 ; 5 }

6 tháng 3 2020

\(x^2+4x-y^2+4\\ =\left(x^2+4x+4\right)-y^2\\ =\left(x+2\right)^2-y^2\\ =\left(x+2-y\right)\cdot\left(x+2+y\right)\)

\(2xy-x^2-y^2+16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y+4\right)\cdot\left(x-y-4\right)\)

\(x^2-2x-4y^2-4y\\ =\left(x^2-4y^2\right)-\left(2x+4y\right)\\ =\left(x-2y\right)\cdot\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\cdot\left(x-2y+2\right)\)

\(x^2+6x+9-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\cdot\left(x-3+y\right)\)

\(3x^2+6xy+3y^2-3z^2\\ =3\cdot\left(x^2+2xy+y^2-z^2\right)\\ =3\cdot\left[\left(x^2+2xy+y^2\right)-y^2\right]\\ =3\cdot\left[\left(x-y\right)^2-z^2\right]\\ =3\cdot\left(x-y-z\right)\cdot\left(x-y+z\right)\)

\(9x-x^3\\ =x\cdot\left(9-x^2\right)\\ =x\cdot\left(3-x\right)\cdot\left(3+x\right)\)

\(\left(2xy+1\right)^2-\left(2x+y\right)^2\\ =\left(2xy+1-2x-y\right)\cdot\left(2xy+1+2x-y\right)\)

19 tháng 7 2018

Phép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thứcCâu D ở chỗ x+1 hay x-1 ạ

19 tháng 7 2018

x-1 nha bn