Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4x-9=y^2\)
\(\Leftrightarrow x^2+4x+4-y^2=13\)
\(\Leftrightarrow\left(x+2\right)^2-y^2=13\)
\(\Leftrightarrow\left(x+2-y\right)\left(x+2+y\right)=13=1.13=13.1\)
Thay từng th vào nha
\(x^2+4x-9=y^2\)
\(x^2+4x+4-13-y^2=0\)
\(\left(x+2\right)^2-y^2=13\)
\(\left(x+2+y\right)\left(x+2-y\right)=13=1.13=13.1=\left(-1\right)\left(-13\right)=\left(-13\right)\left(-1\right)\)
Còn lại tự làm!
\(xy=\frac{x}{y}\Leftrightarrow y=\frac{1}{y}\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Thay y vào pt x-y=xy để tìm x
a
\(\left(x-1\right)^{2012}\ge0;\left(y-2\right)^{2010}\ge0;\left(x-z\right)^{2008}\ge0\)
\(\Rightarrow VT\ge0\)
Dấu "=" xảy ra tại \(x=z=1;y=2\)
b
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có:
\(x^2+y^2+z^2=116\)
\(\Leftrightarrow4k^2+9k^2+16k^2=116\)
\(\Leftrightarrow k^2=4\Rightarrow k=2;k=-2\)
Thế ngược lên trên,àm nốt
c
\(\left||x-2|-3\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|-3=4\\\left|x-2\right|-3=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|=1\\\left|x-2\right|=-1\left(voli\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
d
\(xy+2x-y=5\)
\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=3\)
\(\Leftrightarrow\left(y+2\right)\left(x-1\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
Lập bảng làm nốt
đ
Lập bảng xét dâu ik ( trong NCPT toán 7 tập 2 có ) hoặc chia khoảng nếu ko bt bảng xét dấu như thế này,dù hơi dài:v
\(\left|x-2\right|=x-2\Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)
\(\left|x-2\right|=2-x\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)
\(\left|3-2x\right|=3-2x\Leftrightarrow3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow x\le\frac{3}{2}\)
\(\left|3-2x\right|=2x-3\Leftrightarrow3-2x< 0\Leftrightarrow......\Leftrightarrow x>\frac{3}{2}\)
Chia khoảng đi nha !
P/S:Ê trả ơn bằng cách coi bài kiểm tra sử nha !
Áp dụng BĐT giá trị tuyệt đối ta có:
\(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\) (1)
Mặt khác:\(\left(y-5\right)^2\ge0\Rightarrow2\left(y-5\right)^2\ge0\Rightarrow2\left(y-5\right)^2+2\ge2\)
\(\Rightarrow\frac{8}{2\left(y-5\right)^2+2}\le\frac{8}{2}=4\) (2)
Từ (1) và (2) \(\Rightarrow\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\) khi \(\hept{\begin{cases}y=5\\\left(2x+3\right)\left(1-2x\right)\ge0\end{cases}}\)
Với \(\hept{\begin{cases}2x+3\ge0\\1-2x\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-\frac{3}{2}\\x\le\frac{1}{2}\end{cases}}\)\(\Rightarrow-\frac{3}{2}\le x\le\frac{1}{2}\)
Với \(\hept{\begin{cases}2x+3\le0\\1-2x\le0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x\le-\frac{3}{2}\\x\ge\frac{1}{2}\end{cases}}\)(loại)
Vậy \(\frac{-3}{2}\le x\le\frac{1}{2};y=5\) thỏa mãn
\(1)\) Ta có :
\(xy+2x-y=5\)
\(\Leftrightarrow\)\(x\left(y+2\right)-y-2=3\)
\(\Leftrightarrow\)\(x\left(y+2\right)-\left(y+2\right)=3\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(y+2\right)=3\)
Đến đây bạn xét các trường hợp ra
Phần 1 có rồi , phần 2 nè !
Ta có \(M=\frac{-x+24}{x-15}=\frac{-x-15+15+24}{x-15}=\frac{-\left(x+15\right)+39}{x-15}=-1+\frac{39}{x-15}\)
Để M có giá trị lớn nhất thì \(\frac{39}{x-15}\)phải nhỏ nhất
Do đó x - 15 phải lớn nhất hay x - 15 là số nguyên âm lớn nhất
Khi đó x - 15 = -1 nên x = -16 ( thỏa mãn x thuộc Z )
Vậy.....
a) Ta có:
Để M = \(\frac{x+3}{2}\)\(\in\)Z <=> \(x+3⋮2\) <=> \(x+3\in\)B(2) = {0; 2; 4; ....}
<=> \(x\in\){-3; -1; 1; ....}
b) Để N = \(\frac{7}{x-1}\)\(\in\)Z <=> \(7⋮x-1\) <=> \(x-1\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng :
x - 1 | 1 | -1 | 7 | -7 |
x | 2 | 0 | 8 | -6 |
Vậy ...
c) Ta có: P = \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để P \(\in\)Z <=> \(2⋮x+1\) <=> \(x+1\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng:
x + 1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy ...
để M nguyên thì \(\frac{x+3}{2}\) nguyên
=> (x+3) \(\in\)Ư(2)={-2:-1:1:2}
lập bảng ra tìm x nha bn ~!!
mấy ý kia tương tự !
x=2
y=1