Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
y(x-1) = x2+2
<=> x2-y(x-1)+2 = 0
<=> (x2-1)-y(x-1)+3 = 0
<=> (x-1)(x+1)-y(x-1) = -3
<=> (x-1)(x-y+1) = -3
=> x-1 và x-y+1 \(\in\) Ư(-3) = {-1,-3,1,3}
Ta có bảng :
x-1 | -1 | -3 | 1 | 3 |
x | 0 | -2 | 2 | 4 |
x-y+1 | 3 | 1 | -3 | -1 |
y | -2 | -2 | 6 | 6 |
Vậy ...
ta có ; y(x-1)=x^2 +2
<=>y(x-1) -x^2 -2=0
<=.y(x-1) -x(x-1) -(x-1) -1 -2=0
<=.>(y-x-1)(x-1)=3 => y-x-1 và x-1 là các ước nguyên của 3. tiếp theo lập bảng tìm x,y bn nhé
Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Leftrightarrow F=E\)
Từ đó ta có:
\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow F\ge\frac{1}{4}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)
Bạn ơi, cho mình hỏi này
Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\) và sao có \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)
Giải đáp tận tình hộ mình nhé.
Ta có \(\left(12-x\right)\left(12-y\right)\left(12-z\right)\le\frac{\left(36-x-y-z\right)^3}{27}\)
=> \(xyz\le\frac{\left(36-x-y-z\right)^6}{27^2}\)
Mà \(x+y+z\ge3\sqrt[3]{xyz}\)
=> \(xyz\le\frac{\left(36-3\sqrt[3]{xyz}\right)^6}{27^2}\)
<=>\(\sqrt[6]{xyz}\le12-\sqrt[3]{xyz}\)
<=> \(\sqrt[6]{xyz}\le3\)
=> \(xyz\le729\)
Vậy Max xyz=729 khi x=y=z=9
1. Ta có \(x^3+6x^2-19x-24=x^3+x^2+5x^2+5x-24x-24\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)-24\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x-24\right)\)
\(=\left(x+1\right)\left(x+8\right)\left(x-3\right)\)
Đặt x - 3 = k, biểu thức trở thành A = k(k + 4)(k + 11)
Ta thấy ngay A chứa ít nhất một số nhân tử là số chẵn nên A chia hết cho 2. Ta chỉ cần chứng minh A chia hết 3.
Thật vậy, nếu k = 3a thì A chia hết cho A.
Nếu k = 3a + 1 thì k + 11 = 3a + 1 + 11 = 3a + 12 chia hết 3
Nếu k = 3a + 2 thì k + 4 = 3a + 2 + 4 = 3a + 6 chia hết 3
Vậy A chia hết cho 2 và 3 mà (2;3) = 1 nên A chia hết cho 6.
2. \(y^2+2\left(x^2+1\right)=2y\left(x+1\right)\)
\(\Leftrightarrow y^2+2x^2+2=2xy+2y\)
\(\Leftrightarrow y^2+2x^2+2-2xy-2y=0\)
\(\Leftrightarrow2y^2+4x^2+4-4xy-4y=0\)
\(\Leftrightarrow\left(y^2-4y+4\right)+\left(4x^2-4xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2\right)^2+\left(2x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(y-2\right)^2=0\\\left(2x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\2x=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy x = 1, y = 2
Áp dụng bđt côsi cho 2 số dương lần lượt ta có :
\(1+\frac{y}{x}\ge2\sqrt{\frac{y}{x}}\)
\(1+\frac{z}{y}\ge2\sqrt{\frac{z}{y}}\)
\(1+\frac{x}{z}\ge2\sqrt{\frac{x}{z}}\)
Nhân vế theo vế ta đc : \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\ge8\sqrt{\frac{xyz}{xyz}}=8\)
Dấu = xảy ra khi : \(1=\frac{y}{x}\)=> x=y và \(1=\frac{z}{y}\) => z=y và \(1=\frac{x}{z}\) => x=z
=> x=y=z
Thay vào M ta được : \(M=\frac{x^2}{2x^2}+\frac{y^2}{2y^2}+\frac{z^2}{2z^2}=\frac{3}{2}\).
Rút gọn thừa số chung
2
Đơn giản biểu thức
3
Rút gọn thừa số chung
4
Đơn giản biểu thức
y thì thế vô nha
hk biết đúng hay sai nha