\(x,y\in Z\)biết:

a) \(x^2-6xy+13y^2=100\)

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

đề

19 tháng 11 2017

Tìm x,y,z biết

9 tháng 9 2017

help me

  • Toshiro Kiyoshi30GP
  • Nguyễn Đình Dũng19GP
  • Nguyễn Huy Thắng17GP
  • Nguyễn Thanh Hằng16GP
  • Nguyễn Thị Hồng Nhung15GP
  • Rồng Đỏ Bảo Lửa11GP
  • Mysterious Person10GP
  • Đời về cơ bản là buồn... cười!!!8GP
  • Huy Thắng Nguyễn8GP
  • Ánh Dương Hoàng Vũ6GP
9 tháng 9 2017

làm đc chưa,bảo t với........

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

tích mình với

ai tích mình

mình tích lại

thanks

27 tháng 8 2019

help me!!

24 tháng 7 2017

a) \(\frac{x+1}{2x+6}\)+\(\frac{2x+3}{x\left(x+3\right)}\)

\(\frac{x+1}{2\left(x+3\right)}\)\(\frac{2x+3}{x\left(x+3\right)}\)

\(\frac{x\left(x+1\right)}{2x\left(x+3\right)}\)\(\frac{2\left(2x+3\right)}{2x\left(x+3\right)}\)

\(\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)

\(\frac{x^2+5x+6}{2x\left(x+3\right)}\)

\(\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\)

\(\frac{x+2}{2x}\)

b) \(\frac{x-1}{x}\)\(\frac{x+2}{2}\)

\(\frac{2\left(x-1\right)}{2x}\)\(\frac{x\left(x+2\right)}{2x}\)

\(\frac{2x-2+x^2+2x}{2x}\)

\(\frac{x^2+4x-2}{2x}\)

c) \(\frac{1}{x+y}\)\(\frac{-1}{x-y}\)\(\frac{2x}{x^2+y^2}\)

\(\frac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)+\(\frac{-\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)\(\frac{2x\left(x-y\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)

\(\frac{x^3+xy^2-x^2y-y^3-x^3-xy^2-xy^2-y^3+2x^3+2x^2y-2x^2y+2xy^2}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2x^3+xy^2-x^2y-2y^3}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{\left(2x^3-2y^3\right)-\left(x^2y-xy^2\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)-xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{\left(x-y\right)\left(2x^2+2xy+2y^2-xy\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2x^2+xy+2y^2}{\left(x+y\right)\left(x^2+y^2\right)}\)

e) = \(\frac{3x^2-6xy+3y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{3\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

=\(\frac{3x-3y}{x^2+xy+y^2}\)

( Mình bận rồi, lát làm câu d nhé)

28 tháng 7 2017

\(x^2-25=y\left(y+6\right)\) (1)

\(\Leftrightarrow x^2-y^2-6y-25=0\)

\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16\)

Xét các trường hợp, ta tìm được các no nguyên của pt (1).

\(x^2+x+6=y^2\) (2)

\(\Leftrightarrow4x^2+4x+24=4y^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2y^2\right)=-23\)

\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)

Xét các trường hợp, ta tìm được các no nguyên của pt (2).

\(x^2+13y^2=100+6xy\) (3)

\(\Leftrightarrow x^2-6xy+9y^2+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=0^2+\left(\pm10\right)^2=\left(\pm6\right)^2+\left(\pm8\right)^2\)

Xét các trường hợp, ta tìm được các no nguyên của pt (3).

\(x^2-4x=169-5y^2\) (4)

\(\Leftrightarrow\left(x-2\right)^2+5y^2=173\)

Ta thấy:

\(5y^2\) luôn có chữ số tận cùng là 5 hoặc 0

=> Để thoả mãn pt (4), (x - 2)2 phải có chữ số tận cùng là 8 hoặc 3 (vô lý)

Vậy pt (4) vô n0.

\(x^2-x=6-y^2\) (5)

\(\Leftrightarrow4x^2-4x=24-4y^2\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y\right)^2=25=\left(\pm25\right)^2+0^2=\left(\pm3\right)^2+\left(\pm4\right)^2\)

Xét các trường hợp, ta tìm được các no nguyên của pt (5).

28 tháng 7 2017

\(y^3=x^3+x^2+x+1\left(1\right)\)

Ta có:

\(y^3=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)

\(\Rightarrow y>x\)

\(\Rightarrow y\ge x+1\)

\(\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+x^2+x+1\ge x^3+3x^2+3x+1\)

\(\Leftrightarrow2x^2+2x\le0\)

\(\Leftrightarrow2x\left(x+1\right)\le0\)

\(\Rightarrow-1\le x\le0\) mà x là số nguyên

=> x = - 1 hoặc x = 0

(+) x = - 1

VT = 0

=> y = 0 ; x = - 1 (nhận)

(+) x = 0

VT = 1

=> y = 1 ; x = 0 (nhận)

Vậy pt (1) có nonguyên (x ; y) = (0 ; 1) ; (- 1 ; 0)

\(x^4+x^2+1=y^2\) (2)

(+)

\(\left(2\right)\Leftrightarrow y^2=x^4+2x^2+1-x^2\)

\(\Leftrightarrow y^2-\left(x^2+1\right)^2=x^2\)

(+)

\(\left(2\right)\Leftrightarrow x^4+4x^2+4-3x^2-3=y^2\)

\(\Leftrightarrow\left(x^2+2\right)^2-y^2=3\left(x^2+1\right)\)

Ta thấy:

Với mọi \(x\ne0\) thì \(\left(x^2+1\right)^2< y^2< \left(x^2+2\right)^2\) (vô lý)

=> x = 0

=> y = 1 (nhận)

Vậy pt (2) có nonguyên (x ; y) = (0 ; 1)