Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+x+y+2xy^2=xy+x^2+2y^2\)
\(\Leftrightarrow\left(x^2-x\right)+\left(2y^2-2xy^2\right)+\left(xy-y\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x-2y^2+y\right)=1\)
\(\Rightarrow\left(x-1,x-2y^2+y\right)=\left(1,1;-1,-1\right)\)
Tới đây thì đơn giản rồi nhé
Xét \(\hept{\begin{cases}x-1=1\\x-2y^2+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\2y^2-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Cái còn lại làm tương tự
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
Nhìn mà e đã thấy hại não r
khó thế giải bằng mắt ak
A=\(x^3.\left(\frac{-5}{4}x^2y\right)\)=\(x^5\).\(\left(\frac{-5}{4}\right)y\)
-Bậc là: 6
-Hệ số:\(\frac{-5}{4}\)
B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}\right)\)\(x^2y^5\)
=\(\frac{2}{3}.x^8.y^{11}\)
-Bậc là: 19
-Hệ số:\(\frac{2}{3}\)
C=\(\frac{1}{6}x\left(2y^3\right)^2.\left(-9x^5y\right)\)
=\(\frac{1}{6}x\left(4.y^6\right).\left(-9x^5y\right)\)
=-6.\(x^6\).\(y^7\)
-Bậc là: 13
-Hệ số: -6