\(x;y\in Z\)

\(2\left(x+1\right)^2=21-3y^2\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x

Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y

= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y

Ta lại có : 1 + 4y/24 = 1+4y / 9+3y

=> 24=9+3y => 15=3y => y=5

Vậy y=5

Nhớ like

22 tháng 10 2017

b, 1+3y/12 = 1+5y/5x = 1+7y/4x

Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x

= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x

Ta lại có: 1+5y / 5x = 1+5y / 6+2x

=> 5x = 6+2x => 3x = 6 => x=2

Vậy x =2

a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)

\(=-2x^4y^3+4x^3y^4-10x^2y^5\)

b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)

\(=-2x^4+6x^3+2x^2-2x\)

c) Ta có: \(3x^2\left(2x^3-x+5\right)\)

\(=6x^5-3x^3+15x^2\)

d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)

\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)

\(=-4x^3y^2+8x^2y^2-12x^2y\)

f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)

\(=4x^3y^2+3x^2y^2-5x^3y\)

26 tháng 8 2016

khocroiThế câu một các cậu làm được chưa

 

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

30 tháng 10 2019

Violympic toán 7

30 tháng 10 2019

1)   \(3x=2y\)và \(\left(x+y\right)^3-\left(x-y\right)^3=126\)

Có: \(3x=2y\)=> \(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{x+y}{2+3}\)

=> \(\frac{x+y}{5}=\frac{x-y}{-1}\)

=> \(\frac{\left(x+y\right)^3}{5^3}=\frac{\left(x-y\right)^3}{\left(-1\right)^3}=\frac{\left(x+y\right)^3-\left(x-y\right)^3}{5^3-\left(-1\right)^3}=\frac{126}{126}=1\)

=> \(\hept{\begin{cases}\frac{\left(x+y\right)^3}{5^3}=1\\\frac{\left(x-y\right)^3}{\left(-1\right)^3}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=5\\x-y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5+\left(-1\right)}{2}=2\\y=\frac{5-\left(-1\right)}{2}=3\end{cases}}\)

Vậy:...

2) Áp dụng dãy tỉ số bằng nhau ta có: 

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{-3}=\frac{2x-3y+4z}{2.3-3.2+4.\left(-3\right)}=\frac{48}{-12}=-4\)

=> 

\(\frac{x}{3}=-4\Rightarrow x=-12\)

\(\frac{y}{2}=-4\Rightarrow y=-8\)

\(\frac{z}{-3}=-4\Rightarrow z=12\)

Vậy:...