\(x,y\in Z\) thỏa mãn \(2x^2+4y^2-4xy+2x+1=2017\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

\(\Leftrightarrow\left(x-2y\right)^2+\left(x+1\right)^2=2017\)

Giờ biến đổi 2017 thành tổng 2 bình phương của số tự nhiên là ra x,y.

4 tháng 8 2019

Ta có: \(x^2+4y^2+x=4xy+2y+2\)

        \(\Rightarrow x^2-4xy+4y^2+x-2y=2\)

      \(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)

      \(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\) 

Tìm các TH

Mặt khác : \(4x^2+4xy+y^2=2x+y+56\) 

                \(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)

               \(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)

Tìm các TH

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

14 tháng 4 2019

\(x^2+5y^2-4xy-4y+3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-4y+4\right)=1\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2\right)^2=1\)

\(x;y\in Z\)\(\Rightarrow\left(x-2y\right)^2\ge0;\left(y-2\right)^2\ge0\)\(\left(x-2y\right)^2;\left(y-2\right)^2\in N\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(y-2\right)^2=1\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=1\\\left(y-2\right)^2=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

Y
14 tháng 4 2019

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-4y+4\right)-1=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2\right)^2=1=0^2+1^2\)

\(x,y\in Z\) nên ta có các trường hợp sau:

+ TH1 : \(\left\{{}\begin{matrix}x-2y=0\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\left(TM\right)\)

+ TH2 : \(\left\{{}\begin{matrix}x-2y=0\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(TM\right)\)

+ TH3 : \(\left\{{}\begin{matrix}x-2y=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\) (TM )

+ TH4 : \(\left\{{}\begin{matrix}x-2y=-1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\left(TM\right)\)

Vậy có 4 cặp số (x,y) thỏa mãn yêu cầu bài toán là

( 6 ; 3 ) ; ( 2 ; 1 ) ; ( 5 ; 2 ) ; ( 3 ; 2 ).

5 tháng 8 2017

Điểm rơi: x=4;y=2;z=4 

\(A=x^2+4xy+4y^2+2z^2=\left(x-2y\right)^2+8xy+2z^2\)

Mà \(xyz=32\Leftrightarrow z^2=\frac{32^2}{x^2y^2}\)

\(VT=\left(x-2y\right)^2+8xy+\frac{2.32^2}{x^2y^2}\ge0+4xy+4xy+\frac{2.32^2}{x^2y^2}\)

Áp dụng AM-GM:

\(4xy+4xy+\frac{2048}{x^2y^2}\ge3\sqrt[3]{32768}=96\)

\(VT\ge96\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=2y\\xy=8\end{cases}}\)....

14 tháng 9 2016

\(gt\Rightarrow x^2+y^2\le2\left(x+2y\right)\)

Áp dụng Bđt Bunhia

\(\left(x+2y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\le5\cdot2\left(x+2y\right)\)

\(\Rightarrow x+2y\le10\)

Dpcm