Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^x.2^1.3^y=12^x\)
\(\Rightarrow2.3y=12^x:2^x=\left(12:2\right)^x=6^x\)
\(\Rightarrow2.3^y=2^x.3^x\)
\(\Rightarrow3^y:3^x=2^x:2\)
\(\Rightarrow3^{y-x}=2^{x-1}\)
Do : \(3\ne2\)nên : \(y-x=x-1=0\)
\(\Rightarrow x=0+1=1\)
\(\Rightarrow y=0+1=1\)
\(2^{x+1}.3^y=12^x\)
\(2^{x+1}.3^y=\left(2^2.3\right)^x\)
\(2^{x+1}.3^y=2^{2x}.3^x\)
\(\Leftrightarrow\frac{3^y}{3^x}=\frac{2^{2x}}{2^{x+1}}\)
\(\Leftrightarrow3^{y-x}=2^{x-1}\)
Vì x, y thuộc N
\(pt\Leftrightarrow\hept{\begin{cases}y-x=0\\x-1=0\end{cases}}\)\(\Leftrightarrow x=y=1\)
a) Theo đề ta có :
\(2^{x-1}.3^{y-1}=12^{x+y}\)
\(\Rightarrow2^{x-1}.3^{y-1}=\left(2^2.3\right)^{x+y}\)
\(\Rightarrow2^{x-1}.3^{y-1}=2^{2.\left(x+y\right)}.3^{x+y}\)
\(\Rightarrow2^{x-1}=2^{2x+2y}\)và \(3^{y-1}=3^{x+y}\)
\(\Rightarrow x-1=2x+2y\) và \(y-1=x+y\)
\(\Rightarrow x-2x=2y+1\) và \(y-y=x+1\)
\(\Rightarrow-x=2y+1\) và \(x+1=0\)
\(\Rightarrow-\left(-1\right)=2y+1\) và \(x=-1\)
\(\Rightarrow y=\frac{1-1}{2}=0\) và x = -1
___________________________________________________________________________________________________________
b) \(3^x=9^{y-1}\) và \(8^y=2^{x+8}\)
\(\Rightarrow3^x=\left(3^2\right)^{y-1}\) và \(\left(2^3\right)^y=2^{x+8}\)
\(\Rightarrow3^x=3^{2y-2}\) và \(2^{3y}=2^{x+8}\)
\(\Rightarrow x=2y-2\) và \(3y=x+8\)
Thay x = 2y-2 vào 3y = x+8 , ta có :
\(3y=2y-2+8\)
\(\Rightarrow3y=2y+6\)
\(\Rightarrow3y-2y=6\)
\(\Rightarrow y=6\)
Thay y = 6 vào x = 2y-2 ta có :
\(x=2.6-2=10\)
Vậy x = 10 ; y = 6
a)Ta có:
\(2^{x+1}.3^y=12^x=3^x.4^x=3^x.2^{2x}\)
\(\Rightarrow\left\{{}\begin{matrix}2^{x+1}=2^{2x}\Rightarrow x+1=2x\Rightarrow1=2x-x\Rightarrow x=1\\3^y=3^x\Rightarrow y=x=1\end{matrix}\right.\)
Vậy \(x=y=1\) thỏa mãn đề bài
b)Ta có:
\(10^x:5^y=20^y\Rightarrow10^x=20^y.5^y=100^y=10^{2y}\Rightarrow x=2y\)
Vậy các cặp số \(\left(x;y\right)\) thỏa mãn \(x=2y\) (x,y ∈N)sẽ thỏa mãn đề bài
x+(-31/12)^2=(49/12)^2-x
x+x=(49/12)^2-(-31/12)^2
tính x
từ x tìm ra y
b)x(x-y):[y(x-y)]=3/10:(-3/50)=...
=>x/y=... =>x=...;y=...
\(2^x=4^{y-1}\)
\(\Rightarrow2^x=\left(2^2\right)^{y-1}\)
\(\Rightarrow x=2\left(y-1\right)\Rightarrow x=2y-2\)(1)
\(27^y=3^{x+8}\)
\(\Rightarrow\left(3^3\right)^y=3^{x+8}\Rightarrow3y=x+8\)(2)
Từ (1) và (2), ta có:
\(x+8-x=3y-\left(2y-2\right)\)
\(\Rightarrow8=y+2\Rightarrow y=6\)
Mà \(x=2y-2\Rightarrow x=2.6-2=10\)
Vậy x = 10 và y = 6
2x = 4y-1;27y=3x+8
2x= (22)y-1; (33)y = 3x+8
2x= 22y-2; 33y= 3x+8
=> x=2y-2; 3y=x+8
Thay x=2y-2 vào 3y=x+8 ta có:
3y= 2y-2 +8
3y-2y=8-2
y=6
=> x= 2y-2 = 12-2=10
Vậy x=10
y=6
\(2^x+12^2=y^2-3^2\)
<=> \(2^x+153=y^2\)
Với x < 0 => \(2^x\notin Z\)=> \(2^x+153\notin Z\)=> \(y^2\notin Z\)=> \(y\notin Z\)
Với x = 0 => 154 = y^2 ( loại )
Với x > 0
TH1: x = 2k + 1 ( k là số tự nhiên )
Ta có: \(2^{2k+1}+153=y^2\)
VT\(=4^k.2+153\): 3 dư 2
=> \(VP=y^2:3\) dư 2 vô lí vì số chính phương chia 3 dư 0 hoặc 1
TH2: x = 2k ( k là số tự nhien )
Ta có: \(2^{2k}+153=y^2\)
<=> \(\left(y-2^k\right)\left(y+2^k\right)=153\)
=> \(153⋮y+2^k\Rightarrow y+2^k\in\left\{\pm1;\pm153;\pm3;\pm51;\pm9;\pm17\right\}\)
Em tự làm tiếp nhé.
a) 3y=x2.(x+1)+(x+1)=(x2+1).(x+1)
y=0 => x=0 (tự tính)
vì x2+1 và x+1 cùng tính chẵn lẻ, mà 3y lẻ => x2+1 lẻ và x+1 lẻ => x chẵn
+) x chia 3 dư 0 => (x+1).(x2+1) ko chia hết cho 3
+) x chia 3 dư 1 => (x+1).(x2+1) ko chia hết cho 3
+) x chia 3 dư 2 => (x+1).(x2+1) chia hết hco 3, mà x2 chia 3 dư 1 => x2+1 ko chia hết cho 3.(loại)-đoạn này ko hiểu thì hỏi :))
bây h làm kĩ hơn nè, bn cố hiểu ha =,='
\(3^y=x^3+x^2+x+1=x^2.\left(x+1\right)+\left(x+1\right)=\left(x^2+1\right).\left(x+1\right)\)
\(\text{Xét }y=0\Rightarrow\left(x^2+1\right).\left(x+1\right)=1\Rightarrow\left(x^2+1\right),\left(x+1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\hept{\begin{cases}x^2+1=1\\x+1=1\end{cases}\text{hoặc }\hept{\begin{cases}x^2+1=-1\\x+1=-1\end{cases}\Rightarrow}x=0\left(\text{vì x thuộc N}\right)}\)
\(\text{Xét }y\ne0\Rightarrow\left(x^2+1\right).\left(x+1\right)⋮3\)
vì x lẻ x2 cũng lẻ và x chẵn x2 cũng vậy => x2+1 và x+1 cùng tính chẵn lẻ, mà 3y lẻ => x2+1 lẻ và x+1 lẻ => x chẵn
+) x chia 3 dư 0 => x và x2 chia hết cho 3 =>x+1 và x2+1 chia 3 dư 1 => (x+1).(x2+1) không chia hết cho 3
+) x chia 3 dư 1 => x chia 3 dư 1 và x2 chia 3 dư 1 => x+1 và x2+1 chia 3 dư 2 => (x+1).(x2+1) không chia hết cho 3
+) x chia 3 dư 2 => x + 1 chia hết cho 3 và x2+1 chia 3 dư 2 => (x+1).(x2+1) chia hết cho 3 nhưng x2+1 ko chia hết cho 3 (loại)
p/s: chỗ cuối: x chia 3 dư 2, bn lấy vd: 5 : 3 dư 2 và 52 chia 3 dư 1 => 52+1 chia 3 dư 2 :))
còn chỗ vì x2+1 ko chia hết cho 3 nên loại là vì bn thấy 3n(n khác 0)=3.3...3 nên xuất hiện một số ko chia hết cho 3 là loại
----cố hiểu bn nhoa, vt mỏi tay lắm >: