Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
a,Sử dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)
\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)
x;y;z có 2 giá trị: \(x=\frac{1}{2};y=\frac{1}{2};z=\frac{-1}{2}\) và \(x=0;y=0;z=0\)
Với \(x+y+z=0\) \(\Rightarrow x=y=z=0\) (trái với đk đề bài)
Với \(x+y+z\ne0\),áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\)
Mà x+y+z=1/2. Thay vào tìm đc x;y;z =]]
=> x+y/xy =1/3 =>3.[(x-3)+3]=(x-3).y TH1:x-3=1;y-3=9 TH3:x-3= -1;y-3= -9 Vậy{x;y}={4;12};{6;6};{2;-6}
=>(x+y).3=xy =>3.(x-3)+9=(x-3).y =>x=4;y=12(TM) =>x=2;y= -6(TM)
=>3x + 3y=xy =>9=(x-3)(y-3) TH2:x-3=3;y-3=3 TH4:x-3=3;y-3=3
=>3x=xy-3y =>x-3;y-3 thuộc Ư(9) =>x=6;y=6(TM) =>x=0;y=0(L)
=>3x=(x-3).y
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
Do đó ta có:
\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)
Tương tự ta có:
\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)
Do đó biểu thức sẽ bằng:
\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)
Áp dụng tính chất tỉ lệ thức có:
(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1
=>y+z-x=x ; z+x-y=y và x+y-z=z
Do đó ta có:
(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y
Tương tự có:
1 + y/z=2x/z và 1 + z/x =2y/x
Do đó biểu thức sẽ bằng :
2x/z . 2y/x . 2z/y = 8xyz/xyz =8
a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)
\(A=x\cdot\left(-1\right)\cdot x\)
\(A=-x^2\)
b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)
Xét :
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)
\(\frac{x}{8}=6\Leftrightarrow x=48\)
\(\frac{y}{12}=6\Leftrightarrow y=72\)
\(\frac{z}{15}=6\Leftrightarrow z=90\)
\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)
ta có
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)
ta lại có
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)
\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)
ta kết hợp (1) và (2)
\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)
theo tính chất dãy tỉ số = nhau
có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)
thay vào
1. 2n-3 ⋮ n+1
⇒2n+2-5 ⋮ n+1
⇒2(n+1)-5 ⋮ n+1
Do n∈Z
⇒n+1 ∈ Ư(-5)={-1,1,-5,5}
⇒\(\left[{}\begin{matrix}n-1=-1\\n-1=1\\n-1=-5\\n-1=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=2\\n=-4\\n=6\end{matrix}\right.\)
Vậy x∈{0,2,-4,6}
2. Ta có:
x-y-z=0 ⇒\(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)
Thay vào biểu thức ta được:
\(B=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)
⇒\(B=\frac{x-x+y}{x}.\frac{y-y-z}{y}.\frac{z+x-z}{z}\)
⇒\(B=\frac{y.\left(-z\right).x}{x.y.z}=\frac{\left(-1\right)xyz}{xyz}=-1\)
Vậy biểu thức B có giá trị là -1
x=5,y=15.qua de ma k cho minh nha
lời giải