Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có vế phải không âm nên vế trái không âm tức là \(y^2\le25\Leftrightarrow-5\le y\le5\)
Mặt khác thì vế phải chia hết cho 5 nên vế trái chia hết cho 5,suy ra y={-5;0;5}
+)Với y=-5 =>2020(x-2019)2=0=>x=2019
+)Với y=0=> 2020(x-2019)2=25,trường hợp này không tìm được x
+)Với y=-5 thì 2020(x-2019)2=0=>x=2019
Vậy giá trị thỏa mãn của (x;y) là (2019;5);(2019;-5)
\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)
Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)
nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)
thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)
\(\Rightarrow x-1=0\text{ và }y+3=0\)
\(\Rightarrow x=1\text{ và }y=-3\)
\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)
Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)
hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)
\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)
\(\Rightarrow x^2=9\text{ và }6y=2\)
\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)
Câu c) làm tương tự nha
\(\text{Ta có:}\left(x+2019\right)^{2018}\ge0với\forall x\)
\(|y-2020|\ge0với\forall y\)
\(\Rightarrow\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|\ge0với\forall x,y\)
\(\text{Mà }\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|=0\)\(\text{(Theo đề bài)}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2019\right)^{2018}=0\\|y-2020|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2019=0\\y-2020=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=-2019\\y=2020\end{cases}}\)
\(\Rightarrow M=x+y=-2019+2020=1\)
b) Vì \(VT=25-y^2\le25\) nên \(VP=8\left(x-2012\right)^2\le25\Rightarrow\left(x-2012\right)^2\le\frac{25}{8}\)
Mà \(x\in Z\Rightarrow\left(x-2012\right)^2\in Z\) Hay \(\orbr{\begin{cases}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{cases}}\)
Xét \(\left(x-2012\right)^2=0\Rightarrow x=2012\)
\(\Rightarrow25-y^2=0\Rightarrow\orbr{\begin{cases}y=-5\\y=5\end{cases}}\)(TM)
Xét \(\left(x-2012\right)^2=1\) thay vào ta được \(25-y^2=8\Rightarrow y^2=17\)(loại)
Vậy \(\left(x;y\right)=\left\{\left(2012;-5\right);\left(2012;5\right)\right\}\)
\(25-y^2=2020\left(x-2019\right)^2\)
\(\frac{25-y^2}{2020}=\left(x-2019\right)^2\)
\(\pm\sqrt{\frac{25-y^2}{2020}}=x-2019\)
\(x-2019=\pm\sqrt{\frac{25-y^2}{2020}}\)
\(x-2019=\orbr{\begin{cases}\sqrt{\frac{25-y^2}{2020}}\\-\sqrt{\frac{25-y^2}{2020}}\end{cases}}\)
\(x=-\sqrt{\frac{25-y^2}{2020}}+2019\)
\(x=\sqrt{\frac{25-y^2}{2020}}+2019;-\sqrt{\frac{25-y^2}{2020}}+2019\)
=> ko ra :v
có y2\(\ge\)0
Nên 25-y2\(\le\)25
Vậy 2020(x-2019)2\(\le\)25
(x-2019)2\(\le\)\(\frac{5}{404}\)<1
=>x-2019\(\le\)0 => x=2019
Thay x=2019 vào đẳng thức
=> 25-y2=2020(2019-2019)2
25-y2=0
y2=25
Vậy y=5
\(\le\)