\(\frac{x}{3}\)+\(\frac{y}{4}\)=0 và 5x-y=-38
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

=> \(\frac{x}{3}=-\frac{y}{4}\)

=> \(\frac{5x}{15}=\frac{-y}{4}\)

 Áp dụng tính chất dãy tỉ số bằng nhau được:

 \(\frac{5x}{15}=\frac{-y}{4}=\frac{5x-y}{15+4}=-\frac{38}{19}=-2\)

\(\frac{x}{3}=-\frac{y}{4}=-2\)

=> x=-2 x 3 = -6

 y = -2 x -4 = 8

9 tháng 12 2016

a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)

=> x = 4.3 = 12

y = 4.4 = 16

b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

=> x = (-1).2 = -2

y = (-1)(-5) = 5

c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)

=> x = 8

y =12

z = 15

Có \(\frac{x-1}{10}=\frac{y-2}{6}=\frac{z-3}{21}\) và \(5x+y-2x=38\)

\(\Rightarrow\frac{5\left(x-1\right)}{5.10}=\frac{y-2}{6}=\frac{2\left(z-3\right)}{2.21}=\frac{5x-5}{50}=\frac{y-2}{6}=\frac{2z-6}{42}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có : 

\(\frac{5x-5}{50}=\frac{y-2}{6}=\frac{2z-6}{42}=\frac{\left(5x-5\right)+\left(y-2\right)-\left(2z-6\right)}{50+6-42}\)

\(=\frac{5x-5+y-2-2z+6}{50+6-42}=\frac{\left(5x+y-2z\right)+\left(6-5-2\right)}{50+6-42}\)

\(=\frac{38+\left(-1\right)}{50+6-42}=\frac{38+\left(-1\right)}{56-42}=\frac{38-1}{14}=\frac{37}{14}\)  . Từ đó ta có

\(\Rightarrow\frac{5x-5}{50}=\frac{37}{14}\Leftrightarrow5=\left(5x-5\right).14=37.50\Leftrightarrow\left(5x-5\right).14=1850\) 

\(\Rightarrow5x-5=\frac{1850}{14}=\frac{925}{7}\Leftrightarrow5x=\frac{935}{7}+\frac{25}{7}=\frac{960}{7}\Leftrightarrow x=\frac{192}{7}\)

\(\Rightarrow\frac{y-2}{6}=\frac{37}{14}=14\left(y-2\right)=37.6=222\Leftrightarrow y-2=\frac{111}{7}\Leftrightarrow y=\frac{125}{7}\)

\(\Rightarrow\frac{2z-6}{42}=\frac{37}{14}\Leftrightarrow14\left(2z-6\right)=37.42\Leftrightarrow14\left(2z-6\right)=1554\)

\(\Rightarrow2z-6=1544\div11=111\Leftrightarrow2z=117\Leftrightarrow z=58,5\)

22 tháng 7 2019

Câu 1: ĐẶt \(\frac{x}{5}=\frac{y}{4}=k\)\(\Rightarrow x=5k;......y=4k\)

Ta có: \(x^2y=\left(5k\right)^2.\left(4k\right)=400k^3=100\)

\(\Rightarrow k^3=\frac{1}{4}\Rightarrow k=\sqrt[3]{\frac{1}{4}}\)

Vậy \(x=5k=4\sqrt[3]{\frac{1}{4}}\)

\(y=4.\sqrt[3]{\frac{1}{4}}\)

Câu 3 4 5 tương tư:

câu 2. bạn biến đổi: \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)thì sẽ trở thành dạng quen thuộc ở trên. :))

22 tháng 7 2019

Bạn ơi mình chưa học cách bạn làm

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

10 tháng 7 2018

a)  \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\) và  \(2x-3y+z=6\)

Ta có:    \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)( 1 )

              \(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)( 2 )

Từ (1) và (2) ta có:  \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và \(2x-3y+z=6\)

Asp dụng t/c DTSBN, ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\Rightarrow x=27\)

\(\frac{y}{12}=3\Rightarrow y=36\)

\(\frac{z}{20}=3\Rightarrow z=60\)

Vậy \(x=27;y=36;z=60\)

11 tháng 7 2018

các câu còn lại lm tương tự nhé.

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42