K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2021

a,  \(\left(x+y\right)^{2020}+\left|2021-y\right|\le0\)

Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\y=2021\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2021\\y=2021\end{cases}}}\)

b, \(\left|3x+2y\right|^{209}+\left|4y-1\right|^{2020}\le0\)

Dấu ''='' xảy ra <=> \(\hept{\begin{cases}3x=-2y\\4y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2y\\y=\frac{1.}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=\frac{1}{4}\end{cases}}\)Vậy \(\left\{x;y\right\}=\left\{-\frac{1}{6};\frac{1}{4}\right\}\)

10 tháng 4 2020

Tí ăn xong giải tiếp

10 tháng 4 2020

Câu 3a này cái cuối là 1/2018.2020 mới đúng chứ

27 tháng 8 2017

a) Ta có:

\(\left|x+2\right|+\left|3y-1\right|=0\)

=> \(\left|x+2\right|=0\)\(\left|3y-1\right|=0\)

Với \(\left|x+2\right|=0\)=> \(x+2=0\)=> \(x=-2\)

Với \(\left|3y-1\right|=0\)=> \(3y-1=0\)=> \(3y=1\)=>\(y=\frac{1}{3}\)

Vậy \(x=-2;y=\frac{1}{3}\)

b) Ta có:

\(\left|3x-4\right|+\left|3y-5\right|=0\)

=> \(\left|3x-4\right|=0\)\(\left|3y-5\right|=0\)

Với \(\left|3x-4\right|=0\)=> \(3x-4=0\)=> \(3x=4\)=> \(x=\frac{4}{3}\)

Với \(\left|3y-5\right|=0\)=> \(3y-5=0\)=> \(3y=5\)=> \(y=\frac{5}{3}\)

Vậy \(x=\frac{4}{3};y=\frac{5}{3}\)

29 tháng 10 2017

tra loi nhanh gium minh

24 tháng 7 2017

\(\left|x-y-2\right|+\left|y+3\right|=0\)

\(\left\{{}\begin{matrix}\left|x-y-2\right|\ge0\forall x;y\\\left|y+3\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left|x-y-2\right|+\left|y+3\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-y-2\right|=0\Rightarrow x-\left(-3\right)-2=0\Rightarrow x+1=0\Rightarrow x=-1\\\left|y+3\right|=0\Rightarrow y+3=0\Rightarrow y=-3\end{matrix}\right.\)

\(\left|x-2007\right|+\left|y-2008\right|=0\)

\(\left\{{}\begin{matrix}\left|x-2007\right|\ge0\forall x\\\left|y-2008\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left|x-2007\right|+\left|y-2008\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2007\right|=0\Rightarrow x-2007=0\Rightarrow x=2007\\\left|y-2008\right|=0\Rightarrow y-2008=0\Rightarrow y=2008\end{matrix}\right.\)

\(\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|+\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}y\right|=0\)

\(\left\{{}\begin{matrix}\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|\ge0\forall x\\\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}y\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|+\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}x\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|=0\Rightarrow\dfrac{1}{6}+\dfrac{3}{4}x=0\Rightarrow\dfrac{3}{4}x=-\dfrac{1}{6}\Rightarrow x=-\dfrac{2}{9}\\\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}x\right|=0\Rightarrow\dfrac{29}{34}+\dfrac{23}{13}x=0\Rightarrow\dfrac{23}{13}x=-\dfrac{29}{34}\Rightarrow x=-\dfrac{377}{782}\end{matrix}\right.\)

\(\left|x-y-5\right|+\left|y-2\right|\le0\)

\(\left\{{}\begin{matrix}\left|x-y-5\right|\ge0\forall x;y\\\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left|x-y-5\right|+\left|y-2\right|\ge0\)

Lúc này ta có:

\(\left\{{}\begin{matrix}\left|x-y-5\right|+\left|y-2\right|\le0\\\left|x-y-5\right|+\left|y-2\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x-y-5\right|+\left|y-2\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\Rightarrow x-2-5=0\Rightarrow x=7\\\left|y-2=0\right|\Rightarrow y=2\end{matrix}\right.\)

\(\left|3x+2y\right|+\left|4y-1\right|\le0\)

\(\left\{{}\begin{matrix}\left|3x+2y\right|\ge0\forall x;y\\ \left|4y-1\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left|3x+2y\right|+\left|4y-1\right|\ge0\)

Lúc này ta có:

\(\left\{{}\begin{matrix}\left|3x+2y\right|+\left|4y-1\right|\ge0\\\left|3x+2y\right|+\left|4y-1\right|\le0\end{matrix}\right.\)

\(\Rightarrow\left|3x+2y\right|+\left|4y-1\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|3x+2y\right|=0\Rightarrow3x+\dfrac{1}{2}=0\Rightarrow3x=-\dfrac{1}{2}\Rightarrow x=-\dfrac{1}{6}\\\left|4y-1\right|=0\Rightarrow4y=1\Rightarrow y=\dfrac{1}{4}\end{matrix}\right.\)

30 tháng 10 2018

a) Ta có: 3x = 2y; 4x = 2z

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)

\(\dfrac{x}{2}=3\) ⇒ x = 6

\(\dfrac{y}{3}=3\) ⇒ y = 9

\(\dfrac{z}{4}=3\) ⇒ z = 12

Vậy x = 6 ; y = 9 ; z = 12

b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)

và 2x2 + 3y2 - 5z2 = -405

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)

+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2

⇒ x2 = 36 ⇒ x = 6 hoặc x = -6

+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3

⇒ y2 = 81 ⇒ y = 9 hoặc y = -9

+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5

⇒ z2 = 144 ⇒ z = 12 hoặc z = -12

Vậy...................................( bạn tự vậy nhé )

c) Giống câu a ( bạn tự chép lại )

d) Mik ko bt lm

30 tháng 10 2018

CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!

22 tháng 8 2015

ta có vì |3x-4|>0

|3y+5|>0

Vậy suy ra 

|3x-4|=0 và |3y+5|=0

3x-4=0 suy ra x=4/3

3y+5=0 suy ra y=5/3

cái sau cũng làm giống vậy