K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\left(1\right)\)

Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2020}\ge0;\forall x,y\\\left(3y+4\right)^{2018}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0;\forall x,y\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)^{2020}=0\\\left(3y+4\right)^{2018}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)

Vậy...

16 tháng 10 2019

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\)

Ta có:

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2020}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall xy.\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0\) \(\forall xy.\)

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0.\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)

\(\Rightarrow\left(2x-5\right)+\left(3y+4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)

Chúc bạn học tốt!

16 tháng 10 2019

giúp mình với

23 tháng 11 2021

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)

23 tháng 11 2021

Em cảm ơn.

6 tháng 10 2019

Vì (2x+3 )^2018>= 0 ; (3y-5)^2020 >=0 

=>(2x + 3)2018+ (3y-5)2020  >=  0

mà  (2x + 3)2018+ (3y-5)2020 (< hoặc =) 0

=> (2x + 3)2018+ (3y-5)2020  =  0

=> (2x+3 )^2018= 0 ; (3y-5)^2020 =0 

=> 2x+3=0 ; 3y-5=0

=> 2x=-3; 3y=5

=> x=-3/2; y=5/3

b)(x - y - 7)2 >=0; (4x - 3y - 24)2 >= 0

=> (x - y - 7)2 + (4x - 3y - 24)2 >= 0

Dấu = xảy ra <=> (x - y - 7)2 =0; (4x - 3y - 24)2 = 0

<=> x-y-7=0 ; 4x-3y-24=0

<=> x-y=7 ; 4x-3y=24

<=> 4x-4y=28; 4x-3y=24

<=> y=-4; x-y=7

<=> y=-4 ; x=3

6 tháng 10 2019

khó nhỉ

21 tháng 11 2017

a, 2017-|x-2017| = x

=> |x - 2017| = 2017 - x

Th1: x \(\ge\)2017

=> x - 2017 = 2017 - x

=> x + x = 2017 + 2017

=> x = 2017 (thỏa mãn)

Th2: x < 2017

=> x - 2017 = -2017 + x

=> x - x = -2017 + 2017

=> 0 = 0 

Vậy x = 2017

b, Vì \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\\\left(3y-7\right)^{2020}\ge0\\\left|x+y+z\right|\ge0\end{cases}\forall x,y,z}\)

\(\Rightarrow\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|\ge0\)

Mà \(\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|=0\)

Do đó \(\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y-7\right)^{2020}=0\\\left|x+y+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y-7=0\\x+y+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{7}{3}\\z=\frac{-29}{6}\end{cases}}}\)

5 tháng 6 2018

đcm tkg ngu

23 tháng 11 2023

Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)

\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)

Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)

nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)

Vậy \(x=18;y=12;z=9\).

$Toru$

28 tháng 9 2020

GIÚP MIK VS MIK SẼ TiCK CHO BẠN ĐÚNG

28 tháng 9 2020

Câu hỏi của ꧁♥ღ๖ۣۜ Jinny - kun ๖ۣۜღ♥꧂ - Toán lớp 7 | Học trực tuyến

20 tháng 11 2018

(1/3 -2x)^2018 + (3y-x)^2020 <=0

Mà (1/3 -2x) ^ 2018 >= 0 với mọi x ( vì số mũ chẵn)

       (3y-x) ^ 2020 >= 0 với mọi x,y ( vì số mũ chẵn)

=> 1/3 - 2x =0 và 3y-x=0

+)  1/3 -2x =0

=> 2x= 1/3 -0 = 1/3

=> x= 1/3 : 2 =1/6

+) 3y-x =0

=> 3y - 1/6 = 0 (vì x = 1/6)

=> 3y = 1/6

=> y = 1/6 : 3 = 1/18

Có 1/x + 1/y = 1 : (1/6) + 1: (1/18) = 6+18 =24 (đpcm)