Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kí hiệu a l b là a chia hết cho b nhé
xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1
tương tự : y-1 l x-1
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)
+> x=y \(\Rightarrow x^2-1\)l \(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé
\(x^2-6x+9=-y^2-10y-20.\)
\(\left(x-3\right)^2=-y^2-10y-20\)
\(\left(x-3\right)^2=-y^2-10y-20\)
\(\left(x-3\right)^2=-\left(y^2+2.5y+25\right)+5\)
\(\left(x-3\right)^2=-\left(y+5\right)^2+5\)
\(\hept{\begin{cases}x=3\\y+5=\sqrt{5}\Leftrightarrow y=\sqrt{5}-5\end{cases}}\)
b)
\(\left(4x^2-4x+1\right)=-y^2-x^2-2xy\)
\(\left(2x-1\right)^2=-\left(y+x\right)^2\)
\(x=\frac{1}{2}\Leftrightarrow y=-\frac{1}{2}\)
\(a)xy+3x-2y=11\)
\(\Leftrightarrow xy+3x-2y-6=5\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)
\(b)2x^2-2xy+x-y=12\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)
\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)
\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)
\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Vì 2x+1 luôn lẻ
\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
\(A=-x^2+2xy-4y^2+x-10y-8\)
=> \(-4A=4x^2-8xy+16y^2-4x+40y+32\)
\(=\left(4x^2-8xy+4y^2\right)-\left(4x-4y\right)+1+12y^2+36y+31\)
\(=\left(2x-2y\right)^2-2\left(2x-2y\right)+1+3\left(4y^2+2.2y.3+9\right)+4\)
\(=\left(2x-2y+1\right)^2+3\left(2y+3\right)^2+4\ge4\)
=> \(A\le4:-4=-1\)
"=" xảy ra <=> \(\hept{\begin{cases}2x-2y+1=0\\2y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-\frac{3}{2}\\x=2\end{cases}}\)
Vậy max A=-1 <=> x=2 y=-3/2
Câu b em làm tương tự nhé!
\(x^2+10y^2-2xy+6x+1=0\Leftrightarrow\left(x-y\right)^2+\left(3y+1\right)^2=0\)
Vì \(\left(x-y\right)^2\ge0,\left(3y+1\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\3y+1=0\end{matrix}\right.\)\(\Rightarrow x=y=\dfrac{-1}{3}\)
Sửa đề: \(x^2+10y^2-2xy+6y+1=0\)
\(\Leftrightarrow x^2-2xy+y^2+9y^2+6y+1=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(3y+1\right)^2=0\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{3}\)