\(\sqrt{x}+\sqrt{y}=\sqrt{1980}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

Áp dụng bđt cô-si dạng engel:

\(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)

Vậy đẳng thức chỉ xảy ra khi x ; y \(\ge0\)( đpcm )

Chúc bạn học tốt!

9 tháng 7 2018

Ta có : 

\(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge0\\\sqrt{x+y}\ge0\end{cases}}\)

\(\Rightarrow\)\(\left(\sqrt{x}+\sqrt{y}\right)^2\ge\left(\sqrt{x+y}\right)^2\)

\(\Leftrightarrow\)\(x+2\sqrt{x}\sqrt{y}+y\ge x+y\)

\(\Leftrightarrow\)\(2\sqrt{x}\sqrt{y}\ge0\) ( luôn đúng với mọi \(x,y\ge0\) ) 

Vậy \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\) với \(x,y\ge0\)

Chúc bạn học tốt ~ 

18 tháng 6 2018

Áp dụng bđt AM-GM:

\(x^2+\dfrac{1}{x}\ge2\sqrt{x}\)

\(y^2+\dfrac{1}{y}\ge2\sqrt{y}\)

Cộng theo vế: \(VT=x^2+y^2+\dfrac{1}{x}+\dfrac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)=VP\)

\("="\Leftrightarrow x=y=1\)

1 tháng 7 2017

\(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{18}{x+y+z+3}=3\)

2 tháng 7 2017

cảm ơn nha

1 tháng 12 2018

DK:   \(x,y>0\)

Ap dung BDT AM-GM ta co:

\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\sqrt{x}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}+2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=2+2=4\)

Lai co:   \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\sqrt{x}+\sqrt{y}=4\)

=>  dau "="  cua  BDT phai xay ra

Khi do:   \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\sqrt{x}\\\frac{1}{\sqrt{y}}=\sqrt{y}\end{cases}}\)   <=>   \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)   (t/m)

Vay....

1 tháng 3 2018

b, Gọi biểu thức đề ra là B

=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)

=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\) 

( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )

=> Min B=6

1 tháng 3 2018

Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)

\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)

\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)

=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1

=> \(x=y=z=\frac{1}{3}\)

Vậy ...

9 tháng 9 2018

what hell ?
Bạn giải hộ ai à?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.vi diệu !

9 tháng 9 2018

hok cũng giỏi ghê 

~ tự biên tự diễn hả ~