Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cô-si dạng engel:
\(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)
Vậy đẳng thức chỉ xảy ra khi x ; y \(\ge0\)( đpcm )
Chúc bạn học tốt!
Ta có :
\(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge0\\\sqrt{x+y}\ge0\end{cases}}\)
\(\Rightarrow\)\(\left(\sqrt{x}+\sqrt{y}\right)^2\ge\left(\sqrt{x+y}\right)^2\)
\(\Leftrightarrow\)\(x+2\sqrt{x}\sqrt{y}+y\ge x+y\)
\(\Leftrightarrow\)\(2\sqrt{x}\sqrt{y}\ge0\) ( luôn đúng với mọi \(x,y\ge0\) )
Vậy \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\) với \(x,y\ge0\)
Chúc bạn học tốt ~
Áp dụng bđt AM-GM:
\(x^2+\dfrac{1}{x}\ge2\sqrt{x}\)
\(y^2+\dfrac{1}{y}\ge2\sqrt{y}\)
Cộng theo vế: \(VT=x^2+y^2+\dfrac{1}{x}+\dfrac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)=VP\)
\("="\Leftrightarrow x=y=1\)
\(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{18}{x+y+z+3}=3\)
DK: \(x,y>0\)
Ap dung BDT AM-GM ta co:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\sqrt{x}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}+2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=2+2=4\)
Lai co: \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\sqrt{x}+\sqrt{y}=4\)
=> dau "=" cua BDT phai xay ra
Khi do: \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\sqrt{x}\\\frac{1}{\sqrt{y}}=\sqrt{y}\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=1\end{cases}}\) (t/m)
Vay....
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
what hell ?
Bạn giải hộ ai à?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.vi diệu !