\(a,\left(x+3\right)\left(y+2\right)=1\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\left(x+3\right)\left(y+2\right)=1\)

=> x+3 và y+2 thuộc UC(1)={1; -1}

x+31-1
x-2-4
y+21-1
y-1-3

Vậy x=-2; y=-4

       x=-1; y=-4

Câu sau tương tự

13 tháng 8 2019

\(a,\left(x+3\right)\left(y+2\right)=1\)

Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)

KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)

\(d,3x+4y-xy=16\)

\(=3x-xy+4y-12=4\)

\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)

\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)

Chia các trường hợp như câu a của chị ra em nhé

14 tháng 8 2019

a, th1 : 2- x +2=x

<=> X=2

Th2: -2 +x +2= x

<=> X có vô sốnghiệm

14 tháng 8 2019

B1: a, |2 - x| + 2 = x

=> |2 - x| = x - 2

Dễ thấy (2 - x) và số đối của (x - 2)

=> |2 - x| = x - 2

=> 2 - x ≤ 0

=> x  ≥ 2

b, Điều kiện: x + 7 ≥ 0 => x  ≥ -7

Ta có: |x - 9| = x + 7

\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)

31 tháng 7 2019

a) Ta có = 1 = 1.1 = (-1) . (-1)

Lập bảng xét 2 trường hợp ta có : 

\(x+3\)\(1\)\(-1\)
\(y+2\)\(1\)\(-1\)
\(x\)\(-2\)\(-4\)
\(y\)\(-1\)\(-3\)

Vậy các cặp (x;y) thỏa mãn là : (- 2 ; - 1) ; (- 4 ; - 3)

b) 

31 tháng 7 2019

\(a;\left(x+3\right)\left(y+2\right)=1\)

=> Có 2 TH:

*TH1:  x+3 = 1    và       y+2 =1

      => x = -2                 y = -1

* TH2:  x +3 = -1    và y + 2 = -1

     => x = -4                y = -3

22 tháng 5 2017

Đăng từ từ từng câu thoy bn!!

13 tháng 8 2019

Trả lời

Mk nghĩ bạn có thể tham khảo ở CHTT nha !

Có đáp án của câu b;c và d đó.

Đừng ném đá chọi gạch nha !

a) vi(x^2+5)(x^2-25)=0

=>x^2+5=0 hoac x^2-25=0

=>x=...hoac x=...(tu lam)

b)(x-2)(x+1)=0

=>x-2=0 hoac x+1=0

=>x=2 hoac x=-1

c)(x^2+7)(x^2-49)<0

=>x^2+7va x^2-49 trai dau

ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7

con lai tuong tu

tu lam nhe nho k nha

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

a: |3x+2y|+|4y-1|<=0

=>3x+2y=0 và 4y-1=0

=>y=1/4 và x=-1/6

b: |x+y-7|+|xy-10|<=0

=>x+y-7=0 và xy-10=0

=>x+y=7 và xy=10

hay \(\left(x,y\right)\in\left\{\left(2;5\right);\left(5;2\right)\right\}\)

c: |x-y-2|+|y+3|=0

=>x-y-2=0 và y+3=0

=>y=-3 và x-y=2

=>y=-3 và x=2+y=2-3=-1

12 tháng 4 2019

Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)

mà (3-2x)2+(y-5)20\(\le0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)

Vậy: \(x=\frac{3}{2};y=5\)

c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)

\(\Rightarrow\) Có hai trường hợp:

TH1: (x-3)(x-4)=0

Trong hai số (x-3) và (x-4) có một số bằng 0.

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)

TH2: (x-3)(x-4)<0

Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.

mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)

x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)

Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm

Vậy: x\(\in\left\{3;4\right\}\)

Bài 2:

c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)

Vậy:...

11 tháng 4 2019

Phùng Tuệ Minh