Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>\(\frac{2}{36}< \frac{3x}{36}< \frac{4y}{36}< \frac{1}{4}\)
=> 2<3x<4y<9
<=>\(\begin{cases}2< 3x< 9\\2< 4y< 9\\3x< 4y\end{cases}\)<=> \(\begin{cases}x=2\\y=2\end{cases}\)
vậy gtri x=2 và y=2 thỏa mãn
\(\frac{1}{18}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}\)
\(\Leftrightarrow\frac{2}{36}< \frac{3x}{36}< \frac{4y}{36}< \frac{9}{36}\)
\(\Leftrightarrow2< 3x< 4y< 9\)
\(\Leftrightarrow\)\(\begin{cases}3x\in B\left(3\right)\\4y\in B\left(4\right)\end{cases}\) \(\Rightarrow\) \(\begin{cases}3x\in\left\{3;6\right\}\\4y\in\left\{4;8\right\}\end{cases}\) \(\Rightarrow\) \(\begin{cases}x\in\left\{1;2\right\}\\y\in\left\{1;2\right\}\end{cases}\)
Vậy (x;y) \(\in\) {(1;1);(2;2)}
Nếu z lớn hơn hoặc bằng 5 => z lẻ
=>xy chẵn
=>x=2
Nếu y=2=>22+1=5=>z=5( thỏa mãn )
Nếu y lớn hơn hoặc bằng 3 => z chia hết cho 3 => z là hợp số ( loại)
Vậy (x;y;z)=(2;2;5)
xy-x-y=2
=> x.(y-1)-y=2
=>x.(y-1)-(y-1)=3
=>(x-1)(y-1)=3
=> x-1 và y-1 thuộc Ư(3)
Ư(3)={-3;-1;1;3}
Ta có bảng
y-1 | 1 | 3 | -1 | -3 |
y | 2 | 4 | 0 | -2 |
x-1 | 3 | 1 | -3 | -1 |
x | 4 | 2 | -2 | 0 |
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
ta có x*(1+y)+y=9
<=> x*(1+y)+1*(y+1)=9+1 (cộng 2 vế vs 1)
=> (x+1)*(1+y)=10
=>u(10)=(+-1;+-2;+-5;+-10)
mà chỉ có 2*5=10; (-5)*(-2)=10; 1*10=10; (-1)*(-10)=10
TH1: x+1=-5 =>x=-5; y+1=-2 =>y=-3
TH2 X+1=5=>X=4; Y+1=2=>Y=1
TH3 X+1=1=>X=0; Y+1=10=>X=9;
TH4 X+1=-1=>X=-2 Y+1=-10=>Y=-11