K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NB
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DQ
0
MN
5 tháng 6 2020
2) \(x^4-x^2+2x+2\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1+2\right)\left(x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(=\left(x^2+x\right)^2\)
Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x
CQ
1
AH
Akai Haruma
Giáo viên
27 tháng 7 2024
Lời giải:
$x^2+4y^2+9z^2=2x+4y+6z-3$
$\Leftrightarrow (x^2-2x+1)+(4y^2-4y+1)+(9z^2-6z+1)=0$
$\Leftrightarrow (x-1)^2+(2y-1)^2+(3z-1)^2=0$
Ta thấy: $(x-1)^2\geq 0; (2y-1)^2\geq 0; (3z-1)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$(x-1)^2=(2y-1)^2=(3z-1)^2=0$
$\Leftrightarrow x=1; y=\frac{1}{2}; z=\frac{1}{3}$
Khi đó:
$xyz=1.\frac{1}{2}.\frac{1}{3}=\frac{1}{6}$
HT
0