K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

x + y = 7/12  =>  x = 7/12 - y
y + z = -19/24  =>  z = -19/24 - y
Mà z + x = 1/8  =>  7/12 - y - 19/24 - y = 1/8
=>  2y = 7/12 - 19/24 - 1/8  =>  2y = -1/3
=> y = -1/6

12 tháng 6 2017

thank

27 tháng 5 2015

mjk ko bik giải câu a có dc  ko

27 tháng 5 2015

b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)

Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)

=>13 chia hết cho x-3

=>x-3 \(\in\)Ư(13)={-1;1;-13;13}

x-3=-1           x-3=1            x-3 =-13           x-3=13

x  =-1+3        x   =1+3        x    =-13+3        x   =13+3

x=2               x  =4              x=-10              x=16

Vậy x=2;4;-10;16 thì A thuộc Z

c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)

Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)

=>-5 chia hết cho 3x+2

=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}

3x+2=-1             3x+2=1              3x+2=-5           3x+2=5

3x    =-3             3x    =-1             3x   =-7            3x    =3

x       =-1             x     =-1/3            x   =-7/3          x     =1

Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z

d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)

Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)

=> 4 chia hết cho 5x-2

=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}

5x-2=-1           5x-2=1             5x-2=2          5x-2=-2           5x-2=4            5x-2=-4

bạn tự giải tìm x như các bài trên nhé

d) bạn ghi đề mjk ko hjeu

e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)

Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)

=>17 chia hết cho x-3

=>x-3 \(\in\)Ư(17)={1;-1;17;-17}

x-3=1       x-3=-1            x-3=17           x-3=-17

bạn tự giải tìm x nhé

điều cuối cùng cho mjk ****

7 tháng 2 2017

a. Vì \(\frac{x}{y}=\frac{-3}{11}\)

=> x = -3

     y = 11

26 tháng 3 2020

(x+1)+ (x+3) + (x+5)+.....+(x+99) = 0

x+1 + x+3 +x+5 +....+x+99 =0

Có số số  hạng x là : (99-1):2+1= 50 số

Ta có: 50x + ( 1+3+5+...+99) = 0

Đặt A= 1+3+5+...+99

Tổng A là: (99+1).50:2= 2500

=> 50x + 2500 = 0

50x = 0-2500

50x= -2500

x= -2500 :50

x= -50

Vậy...

a) xy - 3x =-19

x(y-3) = -19

=> y-3 \(\in\)Ư(-19) ={ 1; 19; -19 ; -1}

=> y \(\in\){ 4; 22; -16; 2}

Sau bn lập bảng tìm x nha

b) 3x + 4y - xy = 16

3x + y(4-x) =16

12 - [ 3x+ y(4-x)] =12-16

12 - 3x - y(4-x)= -4

3(4-x)- y(4-x) = -4

(3-y) ( 4-x) =-4

Sau bn lập bảng tìm xy nha

Nguồn phần b là của bn Tài nha :>

Bài 1 :

\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)

Có tất cả các số số hạng là : \(\left(99-1\right)\div2+1=50\) ( số )

\(x+1+x+3+x+5+...+x+99=0\)

\(x+x+...+x+1+3+...+99=0\)

\(\left(x\times50\right)+\left[\left(99+1\right)\times50\div2\right]=0\)

\(\left(x\times50\right)+\left(100\times50\div2\right)=0\)

\(\left(x\times50\right)+\left(5000\div2\right)=0\)

\(\left(x\times50\right)+2500=0\)

\(x\times50=0-2500\)

\(x\times50=-2500\)

\(x=-2500\div50\)

\(x=-50\)

Bài 2 :

a ) \(xy-3x=-19\)

\(\Leftrightarrow\)\(x,y\inℤ\)\(y-3\) \(\inƯ\)\(\left(-19\right)\)\(\in\)\(\left\{1;-1;19;-19\right\}\)

Ta có bảng sau

          x            - 19            19            - 1           1 
        y - 3            1           - 1            19        - 19
         y            4             2            22       - 16

Vậy \(\left(x;y\right)\) \(\in\) \(\left\{\left(-19;4\right);\left(19;2\right);\left(-1;22\right);\left(1;-16\right)\right\}\)

b ) \(3x+4y-xy=16\)

\(\Leftrightarrow3x+4y-xy-12=16-12\)

\(\Leftrightarrow\left(3x-xy\right)+\left(4y-12\right)=4\)

\(\Leftrightarrow x\left(3-y\right)+4\left(-y\right)+3=4\)

\(\Leftrightarrow\left(3-y\right)\left(x+4\right)=4\)

\(\Leftrightarrow\)\(x;y\)\(\inℤ\)\(\Rightarrow\)\(3-y\)\(x+4\)\(\in\)\(Ư\)\(\left(4\right)\)=

Ta có bảng sau :

       x + 4             1           - 1                2              - 2           4             - 4    
         x       - 3     - 5       - 2      - 6      0     - 8
       y - 3        4     - 4        2      - 2      1     - 1 
        y        7     - 1        5        1      4       2

Vậy \(\left(x;y\right)\)\(\in\)\(\left\{\left(-3;7\right);\left(-5;-1\right);\left(-2;5\right);\left(-6;1\right);\left(0;4\right);\left(-8;2\right)\right\}\)

24 tháng 12 2022

(x+1)+(x+3)+...+(x+99)=0

Tổng các số hạng là: (99+1):2=50 (số hạng)

=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0

<=> 50.x+\frac{\left(99+1\right).50}{2}2(99+1).50=0 <=> 50.x+2500=0 => x=-2500/50=-50

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

2 tháng 3 2016

=>  x.(-19)= 5.(y-1)

=> x.(-19)=5.y-5

=> x.(-19)=5.(y-1)

=> x=5; y-1=(-19)

=> y=(-19)+1=-18

Vậy y=-18;x=5

2 tháng 3 2016

x=5

y=18