Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn hãy tham khảo link dưới đây :
Link : Tìm x,y và z biết : 4x - 3z = 6y-z = z và 2x+3y+4z=19- Trường Toán Trực tuyến Pitago – Giải pháp giúp em học toán vững vàng!
Chúc bạn học tốt !!!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ta có : \(\frac{1+3y}{12}=\frac{1+6y}{16}=\frac{1+9y}{4x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+9y}{4x}=\frac{1+3y+1+9y}{12+4x}=\frac{2+12y}{12+4x}\)
\(\Rightarrow\frac{1+6y}{16}=\frac{2.\left(1+6y\right)}{12+4x}\)
Do đó : \(16=\frac{12+4x}{2}\)
Từ đó suy ra : x = 5
Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0
Suy ra x;y;z khác 0
Đặt \(2=a;4=b;6=c\) khi đó ta có:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)
Mà \(x;y;z\ne0\) suy ra:
\(ayz+bxz=bxz+xcy=cxy+ayz\)
\(\Rightarrow az=cx;bx=ay\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak;y=bk;z=ck\)
Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{k}{2}=k^2\)
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)
Thay số vào,ta được:
\(x=1;y=2;z=3\)
4xy-6y+4x=16
y(4x-6)+4x=16
=> y(4x-6)+4x-6=10
(4x-6)(y+1)=10
=> 4x-6, y+1 là ước của 10.
Rồi bạn lập bảng là đc