Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+y^2-x-y=8\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)
Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)
Để VP=0 và là các số nguyên
=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)
a/ x^2 + y^2 - x - y = 8
<=> 4x^2 + 4y^2 - 4x - 4y = 32
<=> (2x - 1)^2 + (2y - 1)^2 = 34
<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25
Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9
a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)
b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)
c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)
d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)
Ta có: \(x+\frac{1}{y};y+\frac{1}{x}\) thuộc Z
=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+x.\frac{1}{x}+\frac{1}{y}.y+\frac{1}{xy}=xy+\frac{1}{xy}=xy+\frac{1}{xy}\) thuộc Z
=> \(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+2xy\frac{1}{xy}+\frac{1}{x^2y^2}=x^2y^2+\frac{1}{x^2y^2}+2\) thuộc Z
=> \(x^2y^2+\frac{1}{x^2y^2}\) thuộc Z
Làm lại:
\(2\left(x-1\right)y^2-\left(x-1\right)y=x^2-x-1=x\left(x-1\right)-1\)
với x=1 vô nghiệm
Chia hai vế cho (x-1) khác 0
\(2y^2-y=x-\dfrac{1}{x-1}\)
VP Nguyên x.y, nguyên \(\Rightarrow\dfrac{1}{x-1}\in Z\)
\(\Rightarrow x-1=U\left(1\right)=\left\{-1,1\right\}\Rightarrow x=\left\{0,2\right\}\)
\(\left\{\begin{matrix}\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\\2y^2-y=1\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\\\left[\begin{matrix}y=1\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Kết luận có các cặp nghiệm: (x,y)=(0,1);(2,1)
\(\left(2y^2x-2y^2\right)+\left(x-xy\right)+\left(1-x^2\right)=0\)
\(\Leftrightarrow2y^2\left(x-1\right)-y\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2y^2-y-x-1\right)=0\)
\(\left[\begin{matrix}x=1\\2y^2-y-x-1=0\end{matrix}\right.\) ok. {hết thời gian rồi}
PT <=> \(\left(x+y\right)^2=xy\left(xy+1\right)\)
Đến đây khó rồi :v ai giúp với:P
Không mất tính tổng quát,giả sử \(\left|x\right|\le\left|y\right|\Rightarrow x^2\le y^2\)
Ta có:\(x^2+xy+y^2\le3x^2\)
Khi đó:\(3x^2\ge x^2y^2\Rightarrow y^2\le3\Rightarrow y\in\left\{1;-1;0\right\}\)
Với \(y=0\Rightarrow x=0\)
Với \(y=1\Rightarrow x^2+x+1=x^2\Rightarrow x=-1\)
Với \(y=-1\Rightarrow x^2-x+1=x^2\Rightarrow x=1\)
Vậy \(\left(x;y\right)=\left(1;-1\right)=\left(-1;1\right)=\left(0;0\right)\)
Các bác check hộ cháu ạ.