\(x^2+xy+y^2=x^2y^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

PT <=> \(\left(x+y\right)^2=xy\left(xy+1\right)\)

Đến đây khó rồi :v ai giúp với:P

27 tháng 8 2019

Không mất tính tổng quát,giả sử \(\left|x\right|\le\left|y\right|\Rightarrow x^2\le y^2\)

Ta có:\(x^2+xy+y^2\le3x^2\)

Khi đó:\(3x^2\ge x^2y^2\Rightarrow y^2\le3\Rightarrow y\in\left\{1;-1;0\right\}\)

Với \(y=0\Rightarrow x=0\)

Với \(y=1\Rightarrow x^2+x+1=x^2\Rightarrow x=-1\)

Với \(y=-1\Rightarrow x^2-x+1=x^2\Rightarrow x=1\)

Vậy \(\left(x;y\right)=\left(1;-1\right)=\left(-1;1\right)=\left(0;0\right)\)

Các bác check hộ cháu ạ.

1 tháng 9 2019

\(a,x^2+y^2-x-y=8\)

\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)

Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)

Để VP=0 và là các số nguyên 

=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)

1 tháng 9 2019

a/ x^2 + y^2 - x - y = 8

<=> 4x^2 + 4y^2 - 4x - 4y = 32

<=> (2x - 1)^2 + (2y - 1)^2 = 34

<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25

Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9

2 tháng 4 2017

k mk đi làm ơn 

mk đang bị âm điểm

2 tháng 4 2017

bạn giúp mình đi làm ơn

mình đang ko biết cách làm

7 tháng 12 2017

a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)

b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)

c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)

d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)

20 tháng 6 2020

Ta có: \(x+\frac{1}{y};y+\frac{1}{x}\) thuộc Z 

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+x.\frac{1}{x}+\frac{1}{y}.y+\frac{1}{xy}=xy+\frac{1}{xy}=xy+\frac{1}{xy}\) thuộc Z 

=> \(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+2xy\frac{1}{xy}+\frac{1}{x^2y^2}=x^2y^2+\frac{1}{x^2y^2}+2\) thuộc Z 

=> \(x^2y^2+\frac{1}{x^2y^2}\) thuộc Z

1 tháng 3 2017

Làm lại:

\(2\left(x-1\right)y^2-\left(x-1\right)y=x^2-x-1=x\left(x-1\right)-1\)

với x=1 vô nghiệm

Chia hai vế cho (x-1) khác 0

\(2y^2-y=x-\dfrac{1}{x-1}\)

VP Nguyên x.y, nguyên \(\Rightarrow\dfrac{1}{x-1}\in Z\)

\(\Rightarrow x-1=U\left(1\right)=\left\{-1,1\right\}\Rightarrow x=\left\{0,2\right\}\)

\(\left\{\begin{matrix}\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\\2y^2-y=1\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\\\left[\begin{matrix}y=1\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Kết luận có các cặp nghiệm: (x,y)=(0,1);(2,1)

1 tháng 3 2017

\(\left(2y^2x-2y^2\right)+\left(x-xy\right)+\left(1-x^2\right)=0\)

\(\Leftrightarrow2y^2\left(x-1\right)-y\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-y-x-1\right)=0\)

\(\left[\begin{matrix}x=1\\2y^2-y-x-1=0\end{matrix}\right.\) ok. {hết thời gian rồi}