Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có\(x-2y+3z=22\)
\(\Leftrightarrow2k-6k+15k=22\)
\(\Leftrightarrow11k=22\Leftrightarrow k=2\)
Do đó \(\hept{\begin{cases}\frac{x}{2}=2\Leftrightarrow x=4\\\frac{y}{3}=2\Leftrightarrow y=6\\\frac{z}{5}=2\Leftrightarrow z=10\end{cases}}\)
2.
Theo tính chất dãy tỉ số bằng nhau\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{150}{-12}=-\frac{25}{2}\)
Ta có
\(\frac{x}{2}=-\frac{25}{2}\Leftrightarrow x=2.\left(-25\right):2=-25\)
\(\frac{y}{3}=-\frac{25}{2}\Leftrightarrow y=3.\left(-25\right):2=-\frac{75}{2}\)
\(\frac{z}{5}=-\frac{25}{2}\Leftrightarrow z=5.\left(-25\right):2=-\frac{125}{2}\)
Thử lại ko đúng cách đặt thì \(k^2=-\frac{25}{2}\left(ktm\right)\) mình nghĩ đề sai
- Do (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)
2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}
3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x2 - 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên phair cos thừa số be hơn 0.
=> 0 < x2 < 11
Từ 3 điều trên ==> x2 = 9 => x = 3
1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
Vì \(\left(3x-5\right)^{2010}\ge0\forall x\); \(\left(y-1\right)^{2012}\ge0\forall y\); \(\left(x-z\right)^{2014}\ge0\forall x,z\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)
Vậy \(x=z=\frac{5}{3}\)và \(y=1\)
x2 - y2 + 2y - 22 = 0
<=> x2 - y2 + y + y - 1 = 21
<=> x2 - y(y - 1) + (y - 1) = 21
<=> x2 - (y + 1)(y - 1) = 21
<=> x2 - (y - 1)2 = 21
=> x2 - x(y - 1) + x(y - 1) - (y - 1)2 = 21
<=> x(x - y + 1) + (y - 1)(x - y + 1) = 21
<=> (x + y - 1)(x - y + 1) = 21
Lập bảng xét các trường hợp