Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
a, [x+1]2 + [y+5]2 = 16
Theo đề, ta có: 0 \(\le\)[x+1]2 \(\le\)16; 0\(\le\)[y+5]2 \(\le\)16
Dễ dàng nhận thấy [x+1]2 và [y+5]2 là hai số chính phương, mà từ 0 - 16 chỉ có hai số chính phương 0 và 16 là có tổng là 16
=> Có hai trường hợp:
* \(\hept{\begin{cases}\left[x+1\right]^2=0\\\left[y+5\right]^2=16\end{cases}\Rightarrow}\hept{\begin{cases}x+1=0\\\hept{\begin{cases}y+5=4\\y+5=-4\end{cases}}\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases};}\hept{\begin{cases}x=-1\\y=-9\sqrt[]{}\sqrt[]{}\end{cases}}}\)
a,\(\left(x-3\right).\left(2y+1\right)=7\)
Vì \(x;y\inℤ=>x-3;2y+1\inℤ\)
\(=>x-3;2y+1\inƯ\left(7\right)\)
Nên ta có bảng sau
x-3 | 1 | 7 | -7 | -1 |
2y+1 | 7 | 1 | -1 | -7 |
x | 4 | 10 | -4 | 2 |
y | 3 | 0 | -1 | -4 |
Vậy ...
b,\(A=-126-\left(4^2-5\right)^2+870:29\)
\(=-126-\left(16-5\right)^2+30\)
\(=-126-11^2+30\)
\(=-247+30=-217\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
\(a,\left(x+3\right)\left(y+2\right)=1\)
=> x+3 và y+2 thuộc UC(1)={1; -1}
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | 1 | -1 |
y | -1 | -3 |
Vậy x=-2; y=-4
x=-1; y=-4
Câu sau tương tự
\(a,\left(x+3\right)\left(y+2\right)=1\)
Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)
\(d,3x+4y-xy=16\)
\(=3x-xy+4y-12=4\)
\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)
\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)
Chia các trường hợp như câu a của chị ra em nhé
Đặt A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 )
+ Xét x = 1 ; x = 2 ; x = 3 ; x = 4 thì ta luôn có A = 0 ( loại )
Xét x < 1 ta có :
x - 1 < 0
x - 2 < 0
x - 3 < 0
x - 4 < 0
=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0 ( chọn )
Xét x > 4 ta có :
x - 1 > 0
x - 2 > 0
x - 3 > 0
x - 4 > 0
=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0 ( nhận )
Để A > 0 thì x < 1 hoặc x > 4
4 < x < 1
=> x = 3 ; 2
Ta có :
Với \(x< 1\) thì \(x-1,x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Với \(1\le x< 2\) thì \(x-1\ge0;x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)
Với \(2\le x< 3\) thì \(x-1\ge0;x-2\ge0,x-3< 0,x-4< 0\) nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Với \(3\le x< 4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4< 0\) nên
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)
Với \(x\ge4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4\ge0\)
nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Vậy nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\Leftrightarrow x< 1\) hoặc \(2< x< 3\) hoặc x > 4.
(x - 3)⁴ = (x - 3)²
(x - 3)⁴ - (x - 3)² = 0
(x - 3)².[(x - 3)² - 1] = 0
(x - 3)².(x² - 6x + 9 - 1) = 0
(x - 3)²(x² - 6x + 8) = 0
(x - 3)²(x² - 2x - 4x + 8) = 0
(x - 3)²[(x² - 2x) - (4x - 8)] = 0
(x - 3)²[x(x - 2) - 4(x - 2)] = 0
(x - 3)²(x - 2)(x - 4) = 0
(x - 3)² = 0 hoặc x - 2 = 0 hoặc x - 4 = 0
*) (x - 3)² = 0
x - 3 = 0
x = 3
*) x - 2 = 0
x = 2
*) x - 4 = 0
x = 4
Vậy x = 2; x = 3; x = 4
(x-3)^4=(x-3)^2
→ (x-3)^4 - (x-3)^2 = 0
→ (x-3)^2[(x-3)^2 - 1] = 0
→ (x-3)^2=0 hoặc (x-3)^2=1
→ x-3=0 hoặc x-3=±1
→ x thuộc {3;4;2} ( Thỏa mãn đề )