Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}x+y=4\\\left|x+1\right|+\left|y-2\right|=3\end{cases}}\)
Vì \(\left|x+1\right|\ge0;\left|y-2\right|\ge0\)
=>\(\left|x+1\right|+\left|y-2\right|\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+1+y-2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+y=4\end{cases}}\)
Vậy x=4-y ; y=4-x
áp dụng BĐT giá trị tuyệt đối ta có:
\(\left|x+1\right|+\left|y-2\right|\ge\left|x+y+1-2\right|=3\)
dấu ''='' xảy ra khi và chỉ khi \(\left(x+1\right)\left(y-2\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1< 0\\y-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>0\\y>1\end{cases}}\\\hept{\begin{cases}x< -1\\y< 2\end{cases}}\left(loai\right)\end{cases}}\)từ chỗ đó tự làm được rồi chứ? xét 2 trường hợp 2 thừa số cùng âm hoặc cùng dương
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)
\(\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{3}\right)^2=\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}\)\(=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
\(\Rightarrow x=9.5=45\)
\(y=9.7=63\)
\(z=9.3=27\)
![](https://rs.olm.vn/images/avt/0.png?1311)
XONG RỒI ĐẤY BẠN
a) \(x^2-2x+2xy=3+4y\)
\(x^2-2x+2xy-4y=3\)
\(x\left(x-2\right)+2y\left(x-2\right)=3\)
\(\left(x-2\right)\left(x+2y\right)=3\)
\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)Ta có bảng giá trị:
\(x-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x+2y\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(3\) | \(1\) | \(5\) | \(-1\) |
\(y\) | \(0\) | \(-2\) | \(-2\) | \(0\) |
Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)
b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)
Ta có: \(\left|2x-3y\right|\ge0\)
\(\left|5y-7z\right|\ge0\)
\(\left|x^2-y^2-2z^2-45\right|\ge0\)
\(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)
Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)
\(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)
\(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))
\(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)
Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)
2xy - x + y = 2
<=> 4xy - 2x + 2y = 4
<=> 2x(2y - 1) + (2y - 1) = 3
<=> (2x + 1)(2y - 1) = 3
2x + 1 1 -1 3 -3
2y - 1 3 -3 1 -1
x 0 -1 1 -2
y 2 -1 1 0
Vậy: (x;y) ∈ {(0;2);(-1;-1);(1;1);(-2;0)}
Cre : Lazi
2xy - x + y = 2
=> 2xy - x + y - 2 = 0
=> 4xy - 2x + 2y - 4 = 0
<=> 2x(2y - 1) + 2y - 1 = 3
<=> (2x + 1)(2y - 1) = 3
Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}2x+1\inℤ\\2y-1\inℤ\end{cases}}\)
mà 3 = 1.3 = (-1).(-3)
Lập bảng xét các trường hợp
Vậy các cặp (x;y) thỏa mãn là (0;2) ; (1;1) ; (-1;-1) ; (-2;0)