Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:LCM(3,5,7)= 105
=>\(\frac{3x-5y}{2}\)=\(\frac{7y-3z}{3}\)=\(\frac{5z-7x}{4}\)sẽ bằng \(\frac{21\left(3x-5y\right)}{2.21}\)=\(\frac{15\left(7y-3z\right)}{3.15}\)=\(\frac{9\left(5z-7x\right)}{4.9}\)
Và bằng \(\frac{63x-105y}{42}\)=\(\frac{105y-45z}{45}\)=\(\frac{45z-63x}{36}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{63x-105y+105y-45z+45z-63x}{45+42+36}\)=0
=>3x-5y=0 ;7y-3z=0 ;5z-7x=0
Xét 3x-5y=0 và 7y-3z=0
Có: 3x=5y :7y=3z
=>\(\frac{x}{5}\)=\(\frac{y}{3}\);\(\frac{y}{3}\)=\(\frac{z}{7}\)
=>\(\frac{x}{5}\)=\(\frac{y}{3}\)=\(\frac{z}{7}\)
Áp dung dãy tỉ số bằng nhau ta có:
\(\frac{x+y+z}{5+3+7}\)=\(\frac{17}{15}\)
Do đó: \(\frac{x}{5}\)=\(\frac{17}{15}\)=>x=\(\frac{17}{3}\)
\(\frac{y}{3}\)=\(\frac{17}{15}\)=>y=\(\frac{17}{5}\)
\(\frac{z}{7}\)=\(\frac{17}{15}\)=>z=\(\frac{119}{15}\)
2.Thấy $15;117y$ chia hết cho 3
\Rightarrow $38x$ chia hết cho 3
\Rightarrow $x$ chia hết cho 3
Đặt $x=3a$ (a thuộc Z)
\Rightarrow PT trở thành: $38a+39y=5$
\Leftrightarrow $y=\dfrac{5-38a}{39}=\dfrac{a+5}{39}-a$
Đặt $ dfrac{a+5}{39} = b$ (b thuộc Z)
\Rightarrow $a=39b-5$
\Rightarrow $y=b- (39b-5)=5-38b$
$x=3 (39b-5)=...$
Với b nguyên
Nghiệm tổng quát: $(x;y)=(...;.....)$ với b nguyên
\(2\)
CMR
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)
a,7x=5y
=x/5=y/7
=x+y/5+7
=24/12
=2
b,x/2=y/3=z/5
=(x/2)3=(y/3)3=(z/5)3
=xyz/2.3.5
=-30/30
=-1
c,6x=4y=3z
=6x/12=4y/12=3z/12
=x/2=y/3=z/4
=x+y+z/2+3+4
=18/9
=2
k mik nha bn ^_^
\( (2x+5y+1).(2^{|x|}+y+ x^2 +x)=105\)
Vì 105 là số lẻ nên 2x+5y+1 và 2|x|+y+x2+x cũng là số lẻ.
Có: 2x+5y+1 là số lẻ. Mà 2x+1 là số lẻ
\(\Rightarrow\)5y là số chẵn
\(\Rightarrow\)y là số chắn
Có 2|x|+y+x2+x là só lẻ. Mà x2+x=x(x+1) là tích 2 số tự nhiên liên tiếp nên là số chắn, y cũng là số chẵn
\(\Rightarrow\)2|x| là số lẻ
\(\Rightarrow\)x=0
Thay x=0 vào biểu thức ta có:
\(\left(2.0+5y+1\right)\left(2^{\left|0\right|}+y+0^2+0\right)=105\)
\(\Leftrightarrow\left(0+5y+1\right)\left(1+y+0\right)=105\)
\(\Leftrightarrow\left(5y+1\right)\left(1+y\right)=105\)
\(\Leftrightarrow5y+5y^2+1+y=105\)
\(\Leftrightarrow5y^2+6y+1=105\)
\(\Leftrightarrow5y^2+6y-104=0\)
\(\Leftrightarrow5y^2-20y+26y-104=0\)
\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)
\(\Leftrightarrow\left(y-4\right)\left(5y+26\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\5y+26=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=\frac{-26}{5}\end{cases}}}\)
Mà \(x;y\in Z\Rightarrow y=4\)
Vậy x=0;y=4(tmyc)