Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(36-y^2=\left(6-y\right)\left(6+y\right)=8\left(x-2010\right)^2\)
Do \(y\in N\Rightarrow y\in\left[0,6\right]\)
mà vế trái là số chẵn nên y là số chẵn
nên \(y\in\left\{0;2;4;6\right\}\) thay lại ta có cặp giá trị thỏa mãn là
\(\hept{\begin{cases}x=2008\text{ hoặc }x=2012\\y=2\end{cases}}\text{ hoặc }\hept{\begin{cases}x=2010\\y=6\end{cases}}\)
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
=>2 x+2y =xy
=>xy -2x-2y=0
=>x(y-2)-2(y-2)=4
=>(x-2)(y-2)=4
x-2 | 1 | 4 | -1 | -4 | 2 | -2 |
y-2 | 4 | 1 | -4 | -1 | 2 | -2 |
x | 3 | 6 | 1 | -2 | 4 | 0 |
y | 6 | 3 | 2 | 1 | 4 | 0 |
K NHA
Bs: \(x,y\in \mathbb{Z}\)
Ta có \(36-y^2=8\left(x-2021\right)^2\ge0\Leftrightarrow y^2\le36\)
Mà \(8\left(x-2021\right)^2\) và 36 chẵn nên y chẵn
Do đó \(y^2\in\left\{4;16;36\right\}\)
Với \(y^2=4\Leftrightarrow8\left(x-2021\right)^2=32\Leftrightarrow\left(x-2021\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x=2025\\x=2017\end{matrix}\right.\)
Với \(y^2=16\Leftrightarrow8\left(x-2021\right)^2=20\Leftrightarrow\left(x-2021\right)^2=\dfrac{5}{2}\left(loại\right)\)
Với \(y^2=36\Leftrightarrow8\left(x-2021\right)^2=0\Leftrightarrow x=2021\)
Vậy \(\left(x;y\right)=\left(2025;2\right);\left(2025;-2\right);\left(2017;2\right);\left(2017;-2\right);\left(2021;6\right);\left(2021;-6\right)\)