\(X^2+5Y^2+2X-4XY-3=0\)sao cho Y nhận giá trị lớn nhất

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

Viết dưới dạng pt ẩn x:

\(x^2-2\left(y-3\right)x+\left(y^2-4y+5\right)=0\)

Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow\left(y-3\right)^2-\left(y^2-4y+5\right)\ge0\Leftrightarrow-2y+4\ge0\Leftrightarrow y\le2\)

Vậy Max y = 2, khi đó x = -1.

6 tháng 11 2019

Ta có: \(\left(1^2+1^2+2^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+2z\right)^2=P^2\)

Hay \(18\ge P^2\Rightarrow\sqrt{18}\ge P\ge-\sqrt{18}\)

Is that true?

23 tháng 7 2016

Bài này hơi căng đấy, theo cách tao nhã nào đó, nó có thể là một bề dày không hoen ố. 

Dễ dàng chứng minh được bđt sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(i\right)\)

Thật vậy, áp dụng bđt  \(B.C.S\) cho bộ số bao gồm  \(\left(1;1\right)\)  và  \(\left(x^2;y^2\right)\)  ta được:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\) 

\(\Rightarrow\)  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

Hay nói cách khác,  \(\sqrt{2\left(x^2+y^2\right)}\ge x+y\)

Dấu  \("="\)  xảy ra khi  \(x=y\)

Vậy, bđt đã cho được chứng minh!

Theo như cách đề bài đã chọn, để biểu thức  \(A\)  có giá trị lớn nhất thì  \(\frac{1}{A}\) phải đạt giá trị nhỏ nhất hay ta phải tìm  \(P_{min}\)(với  \(P=\frac{1}{A}\)\(\Rightarrow\) \(P\in Z^+\))

Ta có:  \(P=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)

Lại có:  \(4=x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(2\ge xy\)  (theo bđt Cauchy cho hai số  \(x^2,y^2\)  không âm)

nên  \(P\ge\frac{1}{x}+\frac{1}{y}+1\)

Mặt khác, tiếp tục áp dụng bđt  \(Cauchy-Schwarz\)  dạng  \(Engel\)  cho bộ số gồm  \(\left(\frac{1}{x};\frac{1}{y}\right)\)  đối với  \(P,\)ta có:

\(P\ge\frac{4}{x+y}+1\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}+1=\frac{4}{\sqrt{2.4}}+1=\sqrt{2}+1\) (theo bđt  \(\left(i\right)\)  )

Do đó,  \(P_{min}=\sqrt{2}+1\)  tức là  \(\frac{1}{A}\)  đạt giá trị nhỏ nhất là  \(\sqrt{2}+1\)

Vậy, dễ dàng suy ra được  \(A_{max}=\frac{1}{\sqrt{2}+1}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x,y>0\\x^2+y^2=4\\x=y\end{cases}\Leftrightarrow}\) \(x=y=\sqrt{2}\)

17 tháng 10 2020

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

17 tháng 10 2020

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

https://grandedesafio.com/vn/quiz/32281536