\(x+y\le6\) và \(\frac{25}{x}+\frac{1}{y}=6\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

Áp dụng BĐT Bunhiacopxki dạng mẫu số được : 

\(\frac{5^2}{x}+\frac{1^2}{y}\ge\frac{\left(5+1\right)^2}{x+y}\ge\frac{6^2}{6}\)

Hay \(\frac{25}{x}+\frac{1}{y}\ge6\) . Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{x}{\frac{5^2}{x}}=\frac{y}{\frac{1^2}{y}}\\x+y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5y\\x+y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=1\end{cases}}\)

Vậy (x;y) = (5;1) 

30 tháng 6 2020

\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)

\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)

\(=3+4+\frac{3}{2}=\frac{17}{2}\)

Dấu "=" xảy ra <=> x = 4 và y = 16

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

28 tháng 11 2019

\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).

Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

18 tháng 8 2019

ĐK: \(x\ge-1;y\ge0\)

\(x+y+\sqrt{8y}+5=4\sqrt{x+1}+\sqrt{2}\sqrt{xy+y}\)

\(\Leftrightarrow\)\(\left(x+1-4\sqrt{x+1}+4\right)-\left(\sqrt{x+1}\sqrt{2y}-2\sqrt{2y}\right)+y=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-\sqrt{2y}\left(\sqrt{x+1}-2\right)+y=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-2\sqrt{\frac{y}{2}}\left(\sqrt{x+1}-2\right)+\frac{y}{2}+\frac{y}{2}=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}=0\)

Có: \(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}\ge0\) ( do \(y\ge0\) ) 

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x+1}-\frac{y}{2}-2=0\\\frac{y}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

... 

18 tháng 8 2019

\(\frac{1}{x}+\frac{25}{y}\ge\frac{\left(1+5\right)^2}{x+y}\ge\frac{6^2}{6}=6\)

Dấu "=" xảy ra khi \(x+y=6\) và \(\frac{1}{x}=\frac{5}{y}=\frac{1+5}{x+y}=\frac{6}{6}=1\)\(\Rightarrow\)\(x=1;y=5\)

19 tháng 10 2020

Bổ đề: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left[\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)\right]^2}{2}=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

19 tháng 10 2020

(Cứ thấy sao sao?x + y = 1 = > x = y = 1/2)

Với ĐK : x + y = 1 ... , chỉ có x = y = 1/2 (cái nài là STP mà có phải SD đâu??)

Chia làm 2TH

\(N>\frac{25}{2}\); TH2 : \(N=\frac{25}{2}\)

\(N=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{25}{2}\)

\(N=\left(\frac{1}{2}+\frac{1}{\frac{1}{2}}\right)^2+\left(\frac{1}{2}+\frac{1}{\frac{1}{2}}\right)^2\ge\frac{25}{2}\)

\(N=\left(\frac{1}{2}+1\div1\div2\right)^2+\left(\frac{1}{2}+1\div1\div2\right)^2\ge\frac{25}{2}\)

\(N=\left(\frac{1}{2}+1\div2\right)^2+\left(\frac{1}{2}+1\div2\right)^2\ge\frac{25}{2}\)

\(N=\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{1}{2}\right)^2\ge\frac{25}{2}\)

\(N=\left(1\right)^2+\left(1\right)^2\ge\frac{25}{2}\)

\(N=2\ge\frac{25}{2}\)

----------------------------

\(N=\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2\ge\frac{25}{2}\)

Tương tự như trên :\(N=\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{1}{2}\right)^2\)

\(N=\left(\frac{1}{2}+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)\ge\frac{25}{2}\)

Chẳng khác gì phía trên,mà 25 / 2 = 25 : 2 = 12 , 5 . Lại còn x , y là số dương .

[Trình mình thì chẳng CM được cái này(vì không CM được)]