Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
<=> \(\frac{y+x}{xy}=\frac{1}{2}\)
<=> \(2x+2y=xy\)
<=> \(2x-xy+2y=0\)
<=> \(x\left(2-y\right)+2y-4+4=0\)
<=> \(x\left(2-y\right)-2\left(2-y\right)=-4\)
<=>\(\left(x-2\right)\left(2-y\right)=-4\)
x;y duong nen ta co x-2 va 2-y la cac uoc cua -4
x-2 | 1 | -1 | 2 | -2 | 4 | -4 | ||||||
2-y | -4 | 4 | -2 | 2 | -1 | 1 | ||||||
x | ||||||||||||
y |
Từ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy}{2xy}\Rightarrow2x+2y=xy\)
\(\Rightarrow2y-xy=-2x\)
\(\Rightarrow y\left(2-x\right)=-2x\)
\(\Rightarrow y=-\frac{2x}{2-x}\)
\(\Rightarrow y=\frac{2x}{x-2}\)
\(\Rightarrow y=\frac{2x-4+4}{x-2}\)
\(\Rightarrow y=\frac{2\left(x-2\right)+4}{x-2}\)
\(\Rightarrow y=2+\frac{4}{x-2}\)
Vì y là số nguyên dương nên \(2+\frac{4}{x-2}\) dương
\(\Rightarrow\frac{4}{x-2}\) dương \(\Rightarrow x-2\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)
\(x-2=1=>x=3\left(tm\right)\)
\(x-2=2=>x=0\left(lo\text{ại}\right)\)
\(x-2=4=>x=6\left(tm\right)\)
* Với \(x=3\Rightarrow y=2+\frac{4}{3-2}=2+4=6\left(tm\right)\)
*Với \(x=6=>y=2+\frac{4}{6-2}=2+1=3\left(tm\right)\)
Vậy các cặp số nguyên dương \(\left(x;y\right)\) cần tìm là \(\left(3;6\right);\left(6;3\right)\)
áp dùng BDT cô si chúa Pain có
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)
mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)
b)
áp dụng BDT cô si ta có
\(x+y\ge2\sqrt{xy}\)
lấy từ câu A ta có \(xy\ge4\) " câu a"
suy ra
\(x+y\ge2\sqrt{4}=4\)
1.
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
<=> \(pq\left(x+y\right)=xy\)
Đặt: \(x=ta;y=tb\) với (a; b)=1
Ta có: \(pq.\left(a+b\right)=tab\)
<=> \(pq=\frac{t}{a+b}.ab\left(1\right)\)
vì (a; b) =1 => a, b, a+b đôi một nguyên tố cùng nhau. (2)
(1); (2) => \(t⋮a+b\)
=> \(pq⋮ab\Rightarrow pq⋮a\)vì p; q là hai số nguyên tố nên \(a\in\left\{1;p;q;pq\right\}\)
TH1: a=1 => \(pq⋮b\Rightarrow b\in\left\{1;p;q;pq\right\}\)
+) Khả năng 1: b=1
(1) => \(t=2pq\)=> \(x=y=2pq\)( thỏa mãn)
+) Khả năng 2: b=p
(1) => \(pq=\frac{t}{1+p}.p\Leftrightarrow t=\left(1+p\right)q=q+pq\)
=> \(x=at=q+pq;\)
\(y=at=pq+p^2q\)(tm)
+) Khả năng 3: b=q
tương tự như trên
(1) => \(t=p\left(1+q\right)=p+pq\)
=> \(x=at=p+pq\)
\(y=bt=q\left(p+pq\right)=pq+pq^2\)
+) Khả năng 4: \(b=pq\)
(1) =>\(t=1+pq\)
=> \(x=1+pq;y=pq\left(1+pq\right)=1+p^2q^2\)
TH2: \(a=p\)
=> \(q⋮b\Rightarrow\orbr{\begin{cases}b=1\\b=q\end{cases}}\)
+) KN1: \(b=1\)
Em làm tiếp nhé! Khá là dài
2. \(x^4+4=p.y^4\)
+) Với x chẵn
Đặt x=2m ( m thuộc Z)
=> \(16m^2+4=py^4\)
=> \(py^4⋮4\Rightarrow y^4⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\)=> Đặt y=2n ;n thuộc Z
Khi đó ta có:
\(16m^2+4=p.16n^2\Leftrightarrow4m^2+1=p.4n^2⋮4\)=> \(1⋮4\)( vô lí)
=> X chẵn loại
+) Với x lẻ
pt <=> \(x^4+4=py^4\)
<=> \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)=py^4\)(i)
Gọi \(\left(x^2+2x+2;x^2-2x+2\right)=d\)(1)
=> \(x^2+2x+2⋮d\)
\(x^2-2x+2⋮d\)
=.> \(\left(x^2+2x+2\right)-\left(x^2-2x+2\right)=4x⋮d\)
Vì x lẻ => d lẻ
=> \(x⋮d\)
=> \(2⋮d\Rightarrow d=1\)
Do đó: \(\left(2x^2+2x+2;2x^2-2x+2\right)=1\)(ii)
Từ (i) và (ii) có thể đặt: với \(ab=y^2\)sao cho:
\(x^2+2x+2=pa^2;\)
\(x^2-2x+2=b^2\)<=> \(\left(x-1\right)^2+1=b^2\)\(\Leftrightarrow\left(x-1-b\right)\left(x-1+b\right)=-1\)
<=> x=b=1 hoặc x=1; b=-1
Với x=1 => a^2.p=5 => p=5
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?