Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x^2=1-y^2-z^2\le1\Rightarrow-1\le x\le1\)
Tương tự:\(-1\le y\le1;-1\le z\le1\)
Lại có:\(x^3+y^3+z^3=x^2+y^2+z^2\)
\(\Leftrightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Vì \(x\le1;y\le1;z\le1\) nên \(x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu "=" xảy ra khi \(\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị
\(\Rightarrow S=2020\)
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2(z+1)2=0
=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Suy ra hoặc \(3x-3=0\Leftrightarrow x=1\)
hoặc \(y-3=0\Leftrightarrow y=3\)
hoặc \(z+1=0\Leftrightarrow z=-1\)
\(\Leftrightarrow x\left(x+1\right)=y^2\)
+ Nếu \(y=0\)
\(\Rightarrow x\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
+ Nếu \(y\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}x=y^m\\x+1=y^n\end{matrix}\right.\)
\(\Rightarrow x\left(x+1\right)=y^m.y^n=y^{m+n}=y^2\Rightarrow m+n=2\) (1)
Ta có
\(y^n-y^m=\left(x+1\right)-x=1\)
\(\Leftrightarrow y^n\left(1-y^{m-n}\right)=1.1\)
\(\Rightarrow\left\{{}\begin{matrix}y^n=1\\y^{m-n}=0\end{matrix}\right.\) (2)
Kết hợp (1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}y^n=1\\y^{m-n}=0\\m+n=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=0\\y=0\\m=2\end{matrix}\right.\) mâu thuẫn với đk \(y\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\\y=0\end{matrix}\right.\)